Airway inflammation and remodelling are important pathophysiologic features in asthma and other respiratory conditions. An intact epithelial cell layer is crucial to maintain lung homoeostasis, and this depends on intercellular adhesion, whilst damaged respiratory epithelium is the primary instigator of airway inflammation. The Coxsackievirus Adenovirus Receptor (CAR) is highly expressed in the epithelium where it modulates cell-cell adhesion stability and facilitates immune cell transepithelial migration. However, the contribution of CAR to lung inflammation remains unclear. Here we investigate the mechanistic contribution of CAR in mediating responses to the common aeroallergen, House Dust Mite (HDM). We demonstrate that administration of HDM in mice lacking CAR in the respiratory epithelium leads to loss of peri-bronchial inflammatory cell infiltration, fewer goblet-cells and decreased pro-inflammatory cytokine release. In vitro analysis in human lung epithelial cells confirms that loss of CAR leads to reduced HDM-dependent inflammatory cytokine release and neutrophil migration. Epithelial CAR depletion also promoted smooth muscle cell proliferation mediated by GSK3β and TGF-β, basal matrix production and airway hyperresponsiveness. Our data demonstrate that CAR coordinates lung inflammation through a dual function in leucocyte recruitment and tissue remodelling and may represent an important target for future therapeutic development in inflammatory lung diseases.
Post-operative infection is a major complication in patients recovering from orthopaedic surgery. As such, there is a clinical need to develop biomaterials for use in regenerative surgery that can promote mesenchymal stem cell (MSC) osteospecific differentiation and that can prevent infection caused by biofilm-forming pathogens. Nanotopographical approaches to pathogen control are being identified, including in orthopaedic materials such as titanium and its alloys. These topographies use high aspect ratio nanospikes or nanowires to prevent bacterial adhesion but these features puncture adhering cells, thus also reducing MSC adhesion. Here, we use a poly(ethyl acrylate) (PEA) polymer coating on titanium nanowires to spontaneously organise fibronectin (FN) and to deliver bone morphogenetic protein 2 (BMP2) to enhance MSC adhesion and osteospecific signalling. This nanotopography when combined with the PEA coating enhanced osteogenesis and reduced adhesion of Pseudomonas aeruginosa in culture. Using a novel MSC–Pseudomonas aeruginosa co-culture, we also show that the coated nanotopographies protect MSCs from cytotoxic quorum sensing and signalling molecules. We conclude that the PEA polymer-coated nanotopography can both support MSCs and prevent pathogens from adhering to a biomaterial surface, thus protecting from biofilm formation and bacterial infection and supporting osteogenic repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.