SUMMARYThis study focuses on the use of strong motion data recorded during earthquakes and aftershocks to provide a preliminary assessment of the structural integrity and possible damage in bridges. A system identification technique is used to determine dynamical characteristics and high-fidelity first-order linear models of a bridge from low level earthquake excitations. A finite element model is developed and updated using a genetic algorithm optimization scheme to match the frequencies identified and to simulate data from a damaging earthquake for the bridge. Here, two criteria are used to determine the state of the structure. The first criteria uses the error between the data recorded or simulated by the calibrated nonlinear finite element model and the data predicted by the linear model. The second criteria compares relative displacements of the structure with displacement thresholds identified using a pushover analysis. The use of this technique can provide an almost immediate, yet reliable, assessment of the structural health of an instrumented bridge after a seismic event.
The relative supply of carbon (C), nitrogen (N), and phosphorus (P) to freshwater ecosystems is of fundamental importance to aquatic productivity, nutrient cycling, and food web dynamics. In northern landscapes, ongoing climate change, as well as legacies from atmospheric deposition, have the potential to drive changes in how these elements are recycled on land and exported to streams. While it is well established that dissolved organic carbon (DOC) concentrations have increased in many high latitude streams, the simultaneous trends for N and P and the ratios among these resources, are not well documented. We used data from 13 sites in a boreal stream network to analyze decadal‐scale changes in dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved inorganic P (DIP) concentrations and partition these trends seasonally. We observed widespread declines for DIP and DIN in streams, regardless of catchment characteristics. DIN decline was strongest during the growing season, and together with increases in DOC/DON at several sites, suggests increasing N retention by plants and soil microbes across this landscape. By contrast, declines for DIP occurred primarily during late autumn and winter, indicating that key biogeochemical changes are also occurring during non‐growing season. Linking these trends to increases in DOC concentration in streams revealed changes in the ratio of energy to nutrient supply for the majority of sites, becoming richer in carbon and poorer in limiting nutrients over time. Overall, our observations from this stream network point to ongoing oligotrophication, with possible consequences for aquatic ecosystems in boreal landscapes.
Many recent studies have indicated upward trends in carbon and nutrient concentrations from drained peatland forests over time since their initial drainage, but the mechanisms behind these trends are still poorly understood. We gathered data on nitrogen and phosphorus concentrations discharged from 37 drained boreal peatland forests where we also had data on peat and tree stand characteristics. We found that tree stand volume and peat bulk density were positively correlated with the nitrogen and phosphorus concentrations discharged from particularly the deep-peated sites.We interpret these results to indicate that a plausible reason for the reported upward trends in nutrient concentrations is the maturing and growing of the tree stands over time since initial drainage and the consequent increasing evapotranspiration capacity, which results in lowered soil water levels and enhanced aerobic peat mineralization. We discuss how our results should be considered in the management of drained peatland forests.
<p>Lateral carbon (C) flux results from complex interplay of formation, transport and biodegradation of dissolved organic carbon (DOC), and is an important but rather scarcely studied component of the C balance in peatlands. Temperature and water table (WT) are the primary factors regulating peat CO<sub>2</sub> emissions and the release of DOC. DOC dynamics in soil is complicated because the DOC storage is continuously increased by the decomposition of solid organic matter, but simultaneously decreased by biodegradation. Any upscaling of lateral C fluxes requires understanding these coinciding processes. We studied the effect of temperature and WT on CO<sub>2</sub> emission and DOC concentration in pore water while incubating peat columns (diameter 0.2 m height 0.5 m) in laboratory conditions for eight months. Peat columns were extracted from drained forested peatlands in Finland, Estonia, Sweden and Ireland. WT was set to -0.2 m and -0.4 m distance from the column upper end. During the incubation, the temperature ranged between 18&#160; and 34 &#8304;C. DOC samples were extracted in monthly intervals from the columns using Rhizon soil water samplers. At the same time CO<sub>2</sub> emission was measured from the headspace of the column. DOC biodegradation to CO<sub>2</sub> and its temperature sensitivity was studied by incubating soil water samples in controlled conditions. The quality (aromaticity) of DOC was investigated with a UV-VIS spectrophotometer. The effect of temperature on DOC concentration was not straightforward unlike in the case of CO<sub>2</sub> emission. DOC concentration increased steepest when the temperature exceeded 25&#160; &#8304;C, whereas with lower temperatures DOC was unchanged or slightly decreased. This can be due to different temperature sensitivities of DOC release and its biodegradation. Low WT resulted in high CO<sub>2</sub> emissions and DOC concentrations. These results are important in developing ecosystem models accounting for lateral C fluxes and the effects of forest management, drainage and climate change in managed peatlands.</p>
Carbon (C), nitrogen (N), and phosphorus (P) export from catchments is strongly regulated by interactions between hydrological flowpaths and their terrestrial use/storage. While concentration‐discharge (c‐Q) relationships have been widely used to understand this interplay for C, N, and P individually, how flow regulates the relative supply of these resources across spatial and temporal scales is not well documented. Here, we analyze c‐Q relationships from 12 years of data to test how seasonal flow regulates the concentrations of inorganic N (Dissolved inorganic nitrogen [DIN]) and P (Dissolved inorganic phosphorus [DIP]), dissolved organic N (DON) and C (dissolved organic carbon [DOC]) and their respective ratios across 12 streams in a boreal landscape. We observed opposing c‐Q relationships between organic and inorganic solutes. DOC and DON tended toward transport limitation with little year‐to‐year change, whereas ammonium (NH4) and DIP were increasingly source limited over time. These different c‐Q relationships translated into large (up to three‐fold) shifts in resource ratios (e.g., DOC:DIN) in response to changes in flow. Our results also highlight strong influences of catchment structure on c‐Q patterns, regardless of solute, season, and longer‐term directional changes. Here, the organic solute c‐Q responses became less transport limited over time; while inorganic solute responses became less source limited with increasing mire/decreasing forest cover. Overall, differences in timing of catchment exports for C, N, and P, create dynamic variation in solute concentrations in streams with subsequent impacts on resource stoichiometry that is central to aquatic ecological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.