CorrectionsBIOCHEMISTRY. For the article ''Interaction of RNA polymerase with forked DNA: Evidence for two kinetically significant intermediates on the pathway to the final complex,'' by Laura Tsujikawa, Oleg V. Tsodikov, and Pieter L. deHaseth, which appeared in number 6, March 19, 2002, of Proc. Natl. Acad. Sci. USA (99, 3493-3498; First Published March 12, 2002; 10.1073͞ pnas.062487299), the authors note the following concerning RNA polymerase (RNAP) concentrations. No correction was made for the fraction of RNAP (0.5) that is active in promoter binding. With this correction, the values of K 1 and K app (but not K f ) would increase by about a factor of 2. The relative values would remain essentially unchanged. Also, the legends to Figs. 2, 3, and 5 contain errors pertaining to the symbols used for data obtained with and without heparin challenge, the duration of the challenge, and the concentration of added heparin. The figures and the corrected legends appear below. Fig. 2. Determination of equilibrium affinities by titration of wt Fork with RNAP. The reactions contained 1 nM wt Fork and variable amounts of RNAP as shown and were analyzed by electrophoretic mobility shift immediately (OE; data shown are averages of three independent experiments) or after a challenge with 100 g͞ml heparin for 10 min (F; data shown are averages of four independent experiments). The curves shown reflect the simultaneous errorweighted fits of the data to Eqs. 3 and 4 -7. The parameters are shown in Table 1 (line 1). www.pnas.org͞cgi͞doi͞10.1073͞pnas.013667699 Fig. 3. Kinetics of complex formation. RNAP (65 nM) and wt forked DNA (1 nM) were incubated for various time intervals and then complex formation was determined immediately (Ϫheparin) or after a 2-min challenge with 100 g͞ml heparin (ϩheparin). The Ϫheparin data (s) were fit (error-weighted) with Eq. 8 with a 2 ϭ 0 (kaϪ ϭ 0.10 Ϯ 0.01 s Ϫ1 ) and the ϩheparin data (OE) with both single (k aϩ ϭ 0.036 Ϯ 0.004 s Ϫ1 ; thin line) and double-exponential (ka 1 ϭ 0.044 Ϯ 0.002 s Ϫ1 ; ka 2 ϭ (5 Ϯ 3) ϫ 10 Ϫ4 s Ϫ1 ; thick line) equations. Fig. 5.Comparison of the kinetics for formation and dissociation of competitor-resistant complexes between RNAP and wt Fork. Association data were obtained as described in the text and the legend for Fig. 3 except the concentration of forked DNA was 10 nM. Dissociation kinetics were obtained by challenging with 100 g͞ml heparin a mixture of RNAP and forked DNA that had been incubated for 30 min. The curves represent double-exponential fits of the data to Eq. 10. (A) wt RNAP. The observed association rate constants (s) are shown in the legend for Fig. 3; for the slow phase of the dissociation of the wt Fork-wt RNAP complex (F), kd 2 ϭ (1.3 Ϯ 0.2) ϫ 10 Ϫ4 s Ϫ1 . (B) YYW RNAP. The slow phase of the association reaction (F) has a ka 2 ϭ (1.1 Ϯ 0.3) ϫ 10 Ϫ3 s Ϫ1 ; the slow phase of the dissociation reaction (s), a kd 2 ϭ (6 Ϯ 1) ϫ 10 Ϫ4 s Ϫ1 . Fig. 6. BCL-6 preferentially binds to the wild-type exon 1 in Ly1 cells. Both Ly1 and the control Ly7 cells wer...
To date five human mucin cDNAs (MUC2, 5A, 5B, 5C and 6) mapped to 11p15.3-15.5, so it appears that this chromosome region might contain several distinct gene loci for mucins. Three of these cDNAs, MUC5A, B and C, were cloned in our laboratory and previously published. A common number, 5, was recommended by the Human Gene Mapping Nomenclature Committee to designate them because of their common provenance from human tracheobronchial mucosa. In order to define whether they are products of the same gene locus or distinct loci, we describe in this paper physical mapping of these cDNAs using the strategy of analysis of CpG islands by pulse-field gel electrophoresis. The data suggest that MUC5A and MUC5C are part of the same gene (called MUC5AC) which is distinct from MUC5B. In the second part of this work, complete sequences of the inserts corresponding to previously described (JER47, JER58) and novel (JER62, JUL32, MAR2, MAR10 and MAR11) cDNAs of the so-called MUC5AC gene are presented and analysed. The data show that in this mucin gene, the tandem repeat domain is interrupted several times with a subdomain encoding a 130 amino acid cysteine-rich peptide in which the TR3A and TR3B peptides previously isolated by Rose et al. [Rose, Kaufman and Martin (1989) J. Biol. Chem., 264, 8193-8199] from airway mucins are found. A consensus peptide sequence for these subdomains involving invariant positions of most of the cysteines is proposed. The consensus nucleotide sequence of this subdomain is also found in the MUC2 gene and in the MUC5B gene, two other mucin genes mapped to 11p15. The functional significance for secreted mucins of these cysteine-rich subdomains and the modular organization of mucin peptides are discussed.
Of the nine mucin genes that have been characterized, only MUC1 and MUC7 have been fully sequenced, and their transcripts can be detected as distinct bands of predicted size by Northern blot analysis. In contrast, the RNA patterns observed for each of the other MUC genes have usually shown a very high degree of polydispersity. This polydispersity has been believed to be one of the typical features of the mucin mRNAs, but until now, its origin has remained unexplained. In the work described in the present paper, we investigated two possible kinds of explanation for this phenomenon: namely that the extensive polydispersity results from a biological mechanism or that it is artifactual in origin. The data obtained, as a result of improving the purification and blotting methods, allowed us to show that in all of the tissues analyzed, each of the genes, MUC2-6, expresses mRNAs that are stable and are of an unusually large size to be found in eukaryotes (14 -24 kilobases). Moreover, allelic variations in length of these mucin transcripts were observed. We demonstrate that these variations are directly related to the variable number of tandem repeat polymorphisms seen at the DNA level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.