Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which will be used in space.
Shape Memory Alloys (SMAs) such as NiTi exhibit stress induced martensitic phase transformation. The purpose of this paper is to provide a better understanding of SMA (such as NiTi) fracture behavior, by considering the vicinity of the crack tip where the transformation occurs. This analysis integrates the asymmetry between tension and compression in an analytical prediction of the surface of phase transformation around the crack tip for loading modes 1, 2, 3 and mixed 1+2. The influence of the asymmetry between tension-compression is more important in plane stress conditions than in plane strain conditions, particularly for mode 1 loading. In order to validate this model, we are currently setting up an experimental investigation to observe strain localization during crack propagation (transformation and martensitic saturation regions) on NiTi thin sheets.
Microbial aerosols can be used as model particles for examining the dispersion and deposition of particles as well as assessing the reliability of the simulation methods. For example, the computational fluid dynamics model (CFD) can be used in the evaluation of indoor microbial contamination and the possible spread of harmful microbes in spaces with high densities of people or in special hermetic environments. The aim of this study was to compare the results of the CFD simulation, which predicts the deposition of biological particles on the surfaces of a spacecraft, and real particle deposition, using Bacillus licheniformis/aerius bacterium particles as the model organism. The results showed that the particles were mainly deposited on floor surfaces, but also onto the supply air diffusers, where bacterial concentrations were higher than on the wall and ceiling surfaces. The CFD simulation showed similar trends with actual particle dispersal, conducted in this experiment with Bacillus particles.
This paper describes simulation mission scenarios which focus on human-robot collaboration. Further, it explains the technologies developed for project Moonwalk and describes possible evaluation methods to be able to evaluate the outcome of two trials in different environments, one reflecting a Lunar and the other, a Martian environment. Moonwalk develops new, practical methods for the interaction between astronauts and robots. In earth-analogue simulations of missions to Moon and Mars, one of the challenges is the simulation of operational constraints such as the reduced gravity or the communication delay between the astronauts and mission control on Earth. In project Moonwalk, two analogue simulations are planned for the conditions that astronauts will encounter during future extravehicular activities (EVA) on planetary surfaces: firstly, simulations subsea and offshore the coast of the French city of Marseilles will be conducted, where an EVA on the lunar surface under reduced gravity will be performed. A second simulation will be conducted in the Spanish region of Rio Tinto (an established Martian analogue site), where operations are focusing on exobiological sampling and sampling procedures under extreme environmental conditions. For these simulation missions specific scenarios for human-robot collaboration have been developed to be performed, compared and evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.