Obesity is a complex disease, shaped by both genetic and environmental factors such as diet. In this study, we use untargeted metabolomics and Drosophila melanogaster to model how diet and genotype shape the metabolome of obese phenotypes. We used 16 distinct outbred genotypes of Drosophila larvae raised on normal (ND) and high-fat (HFD) diets, to produce three distinct phenotypic classes; genotypes that stored more triglycerides on a ND relative to the HFD, genotypes that stored more triglycerides on a HFD relative to ND, and genotypes that showed no change in triglyceride storage on either of the two diets. Using untargeted metabolomics we characterized 350 metabolites: 270 with definitive chemical IDs and 80 that were chemically unidentified. Using random forests, we determined metabolites that were important in discriminating between the HFD and ND larvae as well as between the triglyceride phenotypic classes. We found that flies fed on a HFD showed evidence of an increased use of omega fatty acid oxidation pathway, an alternative to the more commonly used beta fatty acid oxidation pathway. Additionally, we observed no correlation between the triglyceride storage phenotype and free fatty acid levels (laurate, caprate, caprylate, caproate), indicating that the distinct metabolic profile of fatty acids in high-fat diet fed Drosophila larvae does not propagate into triglyceride storage differences. However, dipeptides did show moderate differences between the phenotypic classes. We fit Gaussian graphical models (GGMs) of the metabolic profiles for HFD and ND flies to characterize changes in metabolic network structure between the two diets, finding the HFD to have a greater number of edges indicating that metabolome varies more across samples on a HFD. Taken together, these results show that, in the context of obesity, metabolomic profiles under distinct dietary conditions may not be reliable predictors of phenotypic outcomes in a genetically diverse population.
Genomic instability is an important hallmark of cancer and more recently has been identified in others like neurodegenrative diseases. Chromosomal instability, as a measure of genomic instability, has been used to characterize clinical and biological phenotypes associated with these diseases by measuring structural and numerical chromosomal alterations. There have been multiple chromosomal instability scores developed across many studies in the literature; however, these scores have not been compared because of the lack of a single tool available to calculate and facilitate these various metrics. Here, we provide an R package CINmetrics, that calculates six different chromosomal instability scores and allows direct comparison between them. We also demonstrate how these scores differ by applying CINmetrics to breast cancer data from The Cancer Genome Atlas (TCGA). The package is available on CRAN at https://cran.rproject.org/package=CINmetrics and on GitHub at https://github.com/lasseignelab/CINmetrics.
With an increasing amount of biological data available publicly, there is a need for a guide on how to successfully download and use this data. The 10 simple rules for using public biological data are: (1) use public data purposefully in your research; (2) evaluate data for your use case; (3) check data reuse requirements and embargoes; (4) be aware of ethics for data reuse; (5) plan for data storage and compute requirements; (6) know what you are downloading; (7) download programmatically and verify integrity; (8) properly cite data; (9) make reprocessed data and models Findable, Accessible, Interoperable, and Reusable (FAIR) and share; and (10) make pipelines and code FAIR and share. These rules are intended as a guide for researchers wanting to make use of available data and to increase data reuse and reproducibility.
Schinzel Giedion Syndrome (SGS) is an ultra-rare autosomal dominant Mendelian disease presenting with abnormalities spanning multiple organ systems. The most notable phenotypes involve severe developmental delay, progressive brain atrophy, and drug-resistant seizures. SGS is caused by spontaneous variants in SETBP1, which encodes for the epigenetic hub SETBP1 transcription factor (TF). SETBP1 variants causing classical SGS cluster at the degron, disrupting SETBP1 protein degradation resulting in toxic accumulation, while those located outside cause milder atypical SGS. Due to the multi-system phenotype, we evaluated gene expression and regulatory programs altered in atypical SGS by snRNA-seq of cerebral cortex and kidney of Setbp1S858R heterozygous mice (corresponds to the human likely pathogenic SETBP1S867R variant) compared to matched wild-type mice by constructing cell-type-specific regulatory networks. Setbp1 was differentially expressed in excitatory neurons, but known SETBP1 targets were differentially expressed and regulated in many cell types. Our findings suggest molecular drivers underlying neurodevelopmental phenotypes in classical SGS also drive atypical SGS, persist after birth, and are present in the kidney. Our results indicate the role of SETBP1 as an epigenetic hub leads to cell-type-specific differences in TF activity, gene targeting, and regulatory rewiring. This research provides a framework for investigating cell-type-specific variant impact on gene expression and regulation.
Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises, and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.