This study investigated how driver discomfort was influenced by different types of automated vehicle (AV) controllers, compared to manual driving, and whether this response changed in different road environments, using heart-rate variability (HRV) and electrodermal activity (EDA). A total of 24 drivers were subjected to manual driving and four AV controllers: two modelled to depict “human-like” driving behaviour, one conventional lane-keeping assist controller, and a replay of their own manual drive. Each drive lasted for ~15 min and consisted of rural and urban environments, which differed in terms of average speed, road geometry and road-based furniture. Drivers showed higher skin conductance response (SCR) and lower HRV during manual driving, compared to the automated drives. There were no significant differences in discomfort between the AV controllers. SCRs and subjective discomfort ratings showed significantly higher discomfort in the faster rural environments, when compared to the urban environments. Our results suggest that SCR values are more sensitive than HRV-based measures to continuously evolving situations that induce discomfort. Further research may be warranted in investigating the value of this metric in assessing real-time driver discomfort levels, which may help improve acceptance of AV controllers.
This driving simulator study, conducted as a part of Horizon2020-funded L3Pilot project, investigated how different car-following situations affected driver workload, within the context of vehicle automation. Electrocardiogram (ECG) and electrodermal activity (EDA)-based physiological metrics were used as objective indicators of workload, along with self-reported workload ratings. A total of 32 drivers were divided into two equal groups, based on whether they engaged in a non-driving related task (NDRT) during automation or monitored the drive. Drivers in both groups were exposed to two counterbalanced experimental drives, lasting ~18 minutes each, of Short (0.5 s) and Long (1.5 s) Time Headway conditions during automated car-following (ACF), which was followed by a takeover that happened with or without a lead vehicle. We observed that the workload on the driver due to the NDRT was significantly higher than both monitoring the drive during ACF and manual car-following (MCF). Furthermore, the results indicated that shorter THWs and the presence of a lead vehicle can significantly increase driver workload during takeover scenarios, potentially affecting the safety of the vehicle. This warrants further research into understanding safe time headway thresholds to be maintained by automated vehicles, without placing additional mental or attentional demands on the driver. To conclude, our results indicated that ECG and EDA signals are sensitive to variations in workload, and hence, warrants further investigation on the value of combining these two signals to assess driver workload in real-time, to help the system respond appropriately to the limitations of the driver and predict their performance in driving task if and when they have to resume manual control of the vehicle.
Objective: This study investigated users’ subjective evaluation of three highly automated driving styles, in terms of comfort and naturalness, when negotiating a UK road in a high-fidelity, motion-based, driving simulator. Background: Comfort and naturalness are thought to play an important role in contributing to users’ acceptance and trust of automated vehicles (AVs), although not much is understood about the types of driving style which are considered comfortable or natural. Method: A driving simulator study, simulating roads with different road geometries and speed limits, was conducted. Twenty-four participants experienced three highly automated driving styles, two of which were recordings from human drivers, and the other was based on a machine learning (ML) algorithm, termed Defensive, Aggressive, and Turner respectively. Participants evaluated comfort or naturalness of each driving style, for each road segment, and completed a Sensation Seeking (SS) questionnaire, which assessed their risk-taking propensity. Results: Participants regarded human-like driving styles as more comfortable and natural, compared with the less human-like, ML-based, driving controller. However, between the two human-like controllers, only the Defensive style was considered comfortable, especially for the more challenging road environments. Differences in preference for controller by driver trait were also observed, with the Aggressive driving style evaluated as more natural by the high sensation seekers. Conclusion: Participants were able to distinguish between human- and machine-like AV controllers. A range of psychological concepts must be considered for the subjective evaluation of controllers. Application: Knowing how different driver groups evaluate automated vehicle controllers is important to design more acceptable systems in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.