Sunflower oil was used for the synthesis of a polyol via an epoxidation reaction followed by a ring-opening reaction. The successful synthesis of the sunflower oil-based polyol (SFO polyol) was demonstrated through structural characterizations and wet-chemistry analysis. Bio-based polyurethane (BPU) films were fabricated using synthesized polyol and diisocyanate. Various amounts of graphene oxide (GO) and reduced graphene oxide (rGO) were added separately to see their effect on the physicomechanical and thermal properties of BPU films. Several tests, such as thermogravimetric analysis, tensile strength, dynamic mechanical analysis, hardness, flexural strength, and the water contact angle, were performed to evaluate the effect of GO and rGO on the properties of the BPU films. Some of the analyses of the BPU films demonstrated an improvement in the mechanical properties, for example, the tensile strength increased from 22.5 to 26 MPa with the addition of only 0.05 wt.% GO. The storage modulus improved from 900 to 1000 and 1700 MPa after the addition of 0.02 and 0.05 wt.% GO, respectively. This study shows that a small amount of GO and rGO could improve the properties of BPU films, making them suitable for use in coating industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.