Online social communities are becoming windows for learning more about the health of populations, through information about our health-related behaviors and outcomes from daily life. At the same time, just as public health data and theory has shown that aspects of the built environment can affect our health-related behaviors and outcomes, it is also possible that online social environments (e.g., posts and other attributes of our online social networks) can also shape facets of our life. Given the important role of the online environment in public health research and implications, factors which contribute to the generation of such data must be well understood. Here we study the role of the built and online social environments in the expression of dining on Instagram in Abu Dhabi; a ubiquitous social media platform, city with a vibrant dining culture, and a topic (food posts) which has been studied in relation to public health outcomes. Our study uses available data on user Instagram profiles and their Instagram networks, as well as the local food environment measured through the dining types (e.g., casual dining restaurants, food court restaurants, lounges etc.) by neighborhood. We find evidence that factors of the online social environment (profiles that post about dining versus profiles that do not post about dining) have different influences on the relationship between a user’s built environment and the social dining expression, with effects also varying by dining types in the environment and time of day. We examine the mechanism of the relationships via moderation and mediation analyses. Overall, this study provides evidence that the interplay of online and built environments depend on attributes of said environments and can also vary by time of day. We discuss implications of this synergy for precisely-targeting public health interventions, as well as on using online data for public health research.
Modern predictive models require large amounts of data for training and evaluation, absence of which may result in models that are specific to certain locations, populations in them and clinical practices. Yet, best practices for clinical risk prediction models have not yet considered such challenges to generalizability. Here we ask whether population- and group-level performance of mortality prediction models vary significantly when applied to hospitals or geographies different from the ones in which they are developed. Further, what characteristics of the datasets explain the performance variation? In this multi-center cross-sectional study, we analyzed electronic health records from 179 hospitals across the US with 70,126 hospitalizations from 2014 to 2015. Generalization gap, defined as difference between model performance metrics across hospitals, is computed for area under the receiver operating characteristic curve (AUC) and calibration slope. To assess model performance by the race variable, we report differences in false negative rates across groups. Data were also analyzed using a causal discovery algorithm “Fast Causal Inference” that infers paths of causal influence while identifying potential influences associated with unmeasured variables. When transferring models across hospitals, AUC at the test hospital ranged from 0.777 to 0.832 (1st-3rd quartile or IQR; median 0.801); calibration slope from 0.725 to 0.983 (IQR; median 0.853); and disparity in false negative rates from 0.046 to 0.168 (IQR; median 0.092). Distribution of all variable types (demography, vitals, and labs) differed significantly across hospitals and regions. The race variable also mediated differences in the relationship between clinical variables and mortality, by hospital/region. In conclusion, group-level performance should be assessed during generalizability checks to identify potential harms to the groups. Moreover, for developing methods to improve model performance in new environments, a better understanding and documentation of provenance of data and health processes are needed to identify and mitigate sources of variation.
While machine learning is rapidly being developed and deployed in health settings such as influenza prediction, there are critical challenges in using data from one environment in another due to variability in features; even within disease labels there can be differences (e.g. "fever" may mean something different reported in a doctor's office versus in an online app). Moreover, models are often built on passive, observational data which contain different distributions of population subgroups (e.g. men or women). Thus, there are two forms of instability between environments in this observational transport problem. We first harness knowledge from health to conceptualize the underlying causal structure of this problem in a health outcome prediction task. Based on sources of stability in the model, we posit that for human-sourced data and health prediction tasks we can combine environment and population information in a novel population-aware hierarchical Bayesian domain adaptation framework that harnesses multiple invariant components through population attributes when needed. We study the conditions under which invariant learning fails, leading to reliance on the environment-specific attributes. Experimental results for an influenza prediction task on four datasets gathered from different contexts show the model can improve prediction in the case of largely unlabelled target data from a new environment and different constituent population, by harnessing both environment and population invariant information. This work represents a novel, principled way to address a critical challenge by blending domain (health) knowledge and algorithmic innovation. The proposed approach will have significant impact in many social settings wherein who and where the data comes from matters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.