Abstract-Characteristic modes of a spherical shell are found analytically as spherical harmonics normalized to radiate unitary power and to fulfill specific boundary conditions. The presented closed-form formulas lead to a proposal of precise synthetic benchmarks which can be utilized to validate the method of moments matrix or performance of characteristic mode decomposition. Dependence on the mesh size, electrical size and other parameters can systematically be studied, including the performance of various mode tracking algorithms. A noticeable advantage is the independence on feeding models. Both theoretical and numerical aspects of characteristic mode decomposition are discussed and illustrated by examples. The performance of state-of-the-art commercial simulators and academic packages having been investigated, we can conclude that all contemporary implementations are capable of identifying the first dominant modes while having severe difficulties with higher-order modes. Surprisingly poor performance of the tracking routines is observed notwithstanding the recent ambitious development.Index Terms-Eigenvalues and eigenfunctions, convergence of numerical methods, numerical analysis, numerical stability.
A new method to improve the accuracy and efficiency of characteristic mode (CM) decomposition for perfectly conducting bodies is presented. The method uses the expansion of the Green dyadic in spherical vector waves. This expansion is utilized in the method of moments (MoM) solution of the electric field integral equation (EFIE) to factorize the real part of the impedance matrix. The factorization is then employed in the computation of CMs, which improves the accuracy as well as the computational speed. An additional benefit is a rapid computation of far fields. The method can easily be integrated into existing MoM solvers. Several structures are investigated illustrating the improved accuracy and performance of the new method.
Aspects of the theory of characteristic modes, based on their variational formulation, are presented and an explicit form of a related functional, involving only currents in a spatial domain, is derived. The new formulation leads to deeper insight into the modal behavior of radiating structures as demonstrated by a detailed analysis of three canonical structures: a dipole, an array of two dipoles and a loop, cylinder and a sphere. It is demonstrated that knowledge of the analytical functional can be utilized to solve important problems related to the theory of characteristic modes decomposition such as the resonance of inductive modes or the benchmarking of method of moments code.
Radiation efficiencies of modal current densities distributed on a spherical shell are evaluated in terms of dissipation factor. The presented approach is rigorous, yet simple and straightforward, leading to closed-form expressions. The same approach is utilized for a two-layered shell and the results are compared with other models existing in the literature. Discrepancies in this comparison are reported and reasons are analyzed. Finally, it is demonstrated that radiation efficiency potentially benefits from the use of internal volume which contrasts with the case of the radiation Q-factor.
Hybrid computational schemes combining the advantages of a method of moments formulation of a field integral equation and T-matrix method are developed in this paper. The hybrid methods are particularly efficient when describing the interaction of electrically small complex objects and electrically large objects of canonical shapes such as, spherical multilayered bodies where the T-matrix method is reduced to the Mie series making the method an interesting alternative in the design of implantable antennas or exposure evaluations. Method performance is tested on a spherical multi-layer model of the human head. Along with the hybrid method, an evaluation of the transition matrix of an arbitrarily shaped object is presented and the characteristic mode decomposition is performed, exhibiting fourfold numerical precision as compared to conventional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.