Abstract:The optical theorem relates the total scattering cross-section of a given structure with its forward scattering, but does not impose any restrictions on other directions. Strong backward-forward asymmetry in scattering could be achieved by exploring retarded coupling between particles, exhibiting both electric and magnetic resonances. Here, a hybrid magneto-electric particle (HMEP), consisting of a split ring resonator acting as a magnetic dipole and a wire antenna acting as an electric dipole, is shown to possess asymmetric scattering properties. When illuminated from opposite directions with the same polarization of the electric field, the structure has exactly the same forward scattering, while the backward scattering is drastically different. The scattering cross section is shown to be as low as zero at a narrow frequency range when illuminated from one side, while being maximal at the same frequency
Abstract:Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the 'quasi-stationary field' analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (microDoppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate 'lock in' detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and amplitudes of the frequency comb peaks. Unique spectral signature of micro-Doppler shifts could enable resolving an internal structure of the scatterers and mapping their accelerations in space, which is valuable for a variety of applications spanning from targets identification to stellar radiometry.
It is widely believed that range resolution, the ability to distinguish between two closely situated targets, depends inversely on the bandwidth of the transmitted radar signal. Here we demonstrate a different type of ranging system, which possesses superior range resolution that is almost completely free of bandwidth limitations. By sweeping over the coherence length of the transmitted signal, the partially coherent radar experimentally demonstrates an improvement of over an order of magnitude in resolving targets, compared to standard coherent radars with the same bandwidth. A theoretical framework is developed to show that the resolution could be further improved without a bound, revealing a tradeoff between bandwidth and sweep time. This concept offers solutions to problems which require high range resolution and accuracy but available bandwidth is limited, as is the case for the autonomous car industry, optical imaging, and astronomy to name just few.
Nonlinear light-matter interactions and their applications are constrained by properties of available materials. The use of metamaterials opens the way to achieve precise control over electromagnetic properties at a microscopic level, providing new tools for experimental studies of complex nonlinear phenomena in photonics. Here a doubly resonant nonlinear meta-atom is proposed, analyzed and characterized in the GHz spectral range. The underlying structure is composed of a pair of split rings, resonant at both fundamental and nonlinear frequencies. The rings share a varactor diode, which serves as a microscopic source of nonlinearity. Flexible control over the coupling and near-and far-field patterns are reported, favoring the doubly resonant structure over other realizations. Relative efficiencies of the second and third harmonics, generated by the diode, are tailored by dint of the double-ring geometry, providing a guideline for selecting one frequency against another, using the design of the auxiliary structures. The on-demand control over the microscopic nonlinear properties enables developing a toolbox for experimental emulation of complex nonlinear phenomena.Introduction Nonlinear systems feature a variety of phenomena of great significance for both fundamental studies and applications. Being often challenging for detailed mathematical analysis, they may be studied by applying experimental tools and cross-disciplinary concepts. In particular, nonlinear optics, being a celebrated topic by itself 1 , also provides tools for the emulation of cosmological effects 2 , among many others. Nonlinear optical interactions, in the majority of cases, require the use of high light intensities, due to naturally small susceptibilities of available materials. As a result, observation of many effects is extremely challenging and requires highly sophisticated equipment. The concept of metamaterials, however, provides guidelines for constructing artificial media with novel electromagnetic properties 3 . Careful design of resonant characteristics of the unit cells forming a composite material enables tailoring its linear and nonlinear responses alike 4 . Because efficiencies of nonlinear interactions depend on the power of a local electromagnetic field, its enhancement by means of auxiliary structures is beneficial. Various configurations in both optical and radio-frequency (RF) domains were proposed, demonstrating dramatically improved nonlinear responses of the hybrid systems (see review 5 ). Nonlinearconversion efficiencies may be further improved by employing doubly resonant structures, which concentrate near fields at both the fundamental and multiple (nonlinear) frequencies 6,7,8,9 . This cascaded enhancement is based on recycling both the pump and the nonlinear fields in a cavity, where the latter may also originate from spontaneous vacuum fluctuations 10 . Hybrid optical sources with tailored nonlinear responses, having a broad span of potential applications by themselves 11 , still pose challenges to attempt...
Concealing objects from interrogation has been a primary objective since the integration of radars into surveillance systems. Metamaterial-based invisibility cloaking, which was considered a promising solution, did not yet succeed in delivering reliable performance against real radar systems, mainly due to its narrow operational bandwidth. Here we propose an approach, which addresses the issue from a signal-processing standpoint and, as a result, is capable of coping with the vast majority of unclassified radar systems by exploiting vulnerabilities in their design. In particular, we demonstrate complete concealment of a 0.25 square meter moving metal plate from an investigating radar system, operating in a broad frequency range approaching 20% bandwidth around the carrier of 1.5 GHz. The key element of the radar countermeasure is a temporally modulated coating. This auxiliary structure is designed to dynamically and controllably adjust the reflected phase of the impinging radar signal, which acquires a user-defined Doppler shift. A special case of interest is imposing a frequency shift that compensates for the real Doppler signatures originating from the motion of the target. In this case the radar will consider the target static, even though it is moving. As a result, the reflected echo will be discarded by the clutter removal filter, which is an inherent part of any modern radar system that is designed to operate in real conditions. This signal-processing loophole allows rendering the target invisible to the radar even though it scatters electromagnetic radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.