Ongoing technology node shrinkage requires the lithographic k 1 factor to be pushed closer to its theoretical limit. The application of customized illumination with multi-pole or pixelated sources has become necessary for improving the process window. For standardized exploitation of this technique it is crucial that the optimum source shape and the corresponding intensity distributions can be found in a robust and automated way. In this paper we present a pixelated source optimization procedure and its results. A number of application cases are considered with the following optimization goals: i) enhancement of the depth of focus, ii) improvement of through-pitch behavior, and iii) error sensitivity reduction. The optimization procedure is performed with fixed mask patterns, but at multiple locations. To reduce optical proximity errors, mask biasing is introduced. The optimization results are obtained for the pixelated source shapes, analyzed and compared with the corresponding results for multi-pole shaped sources. Starting with the 45 nm node mask topography effects as well as light polarization conditions have significant impact on imaging performance. Therefore including these effects into the optimization procedure has become necessary for advanced process nodes. To investigate these effects, the advanced topographical mask illumination concept (AToMIC) for rigorous and fast electromagnetic field simulation under partially coherent illumination is applied. We demonstrate the impact of mask topography effects on the results of the source optimization procedure by comparison to corresponding Kirchhoff simulations. The effects of polarized illumination sources are taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.