Dye‐sensitized solar cells (DSSCs) that use an aqueous (40 % w/w water content) choline chloride based deep eutectic solvent as an electrolyte medium have been investigated. The joint combination of the eutectic mixture and an appropriate hydrophilic sensitizer afforded a DSSC with a power conversion efficiency comparable to that using the same electrolyte composition but with conventional, toxic, and volatile solvents as the medium, which thereby paves the way to a new generation of eco‐friendly, nature‐inspired, low‐cost solar devices.
Three distinct stereoselective reactions, catalysed by using a chiral primary amine through different activation methods, have been successfully carried out for the first time in bio-based eutectic mixtures, thereby affording functionalised molecules in very high enantioselectivity. The use of these unconventional and biorenewable reaction media also provides opportunities for facilitating the recovery and the recycling of the chiral catalyst
In this contribution, we report the first successful baker's yeast reduction of arylpropanones using deep eutectic solvents (DESs) as biodegradable and non-hazardous co-solvents. The nature of DES [e.g. choline chloride/glycerol (2:1)] and the percentage of water in the mixture proved to be critical for both the reversal of selectivity and to achieve high enantioselectivity on going from pure water (up to 98:2 er in favour of the Senantiomer) to DES/aqueous mixtures (up to 98:2 er in favour of the R-enantiomer). As a result, both enantiomers of valuable chiral alcohols of pharmaceutical interest were prepared from the same biocatalyst by simply switching the solvent. The possible inhibition of some (S)-oxidoreductases making part of the genome of such a wild-type whole cell biocatalyst when DESs are used as cosolvents may pave the way for an anti-Prelog reduction. The scope and limitations of this kind of biotransformations for a range of aryl-containing ketones are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.