Disaster robotics has become a research area in its own right, with several reported cases of successful robot deployment in actual disaster scenarios. Most of these disaster deployments use aerial, ground, or underwater robotic platforms. However, the research involving autonomous boats or Unmanned Surface Vehicles (USVs) for Disaster Management (DM) is currently spread across several publications, with varying degrees of depth, and focusing on more than one unmanned vehicle—usually under the umbrella of Unmanned Marine Vessels (UMV). Therefore, the current importance of USVs for the DM process in its different phases is not clear. This paper presents the first comprehensive survey about the applications and roles of USVs for DM, as far as we know. This work demonstrates that there are few current deployments in disaster scenarios, with most of the research in the area focusing on the technological aspects of USV hardware and software, such as Guidance Navigation and Control, and not focusing on their actual importance for DM. Finally, to guide future research, this paper also summarizes our own contributions, the lessons learned, guidelines, and research gaps.
The use of robotics in disaster scenarios has become a reality. However, an Unmanned Surface Vehicle (USV) needs a robust navigation strategy to face unpredictable environmental forces such as waves, wind, and water current. A starting step toward this goal is to have a programming environment with realistic USV models where designers can assess their control strategies under different degrees of environmental disturbances. This paper presents a simulation environment integrated with robotic middleware which models the forces that act on a USV in a disaster scenario. Results show that these environmental forces affect the USV’s trajectories negatively, indicating the need for more research on USV control strategies considering harsh environmental conditions. Evaluation scenarios were presented to highlight specific features of the simulator, including a bridge inspection scenario with fast water current and winds.
Purpose IEEE Ontologies for Robotics and Automation Working Group were divided into subgroups that were in charge of studying industrial robotics, service robotics and autonomous robotics. This paper aims to present the work in-progress developed by the autonomous robotics (AuR) subgroup. This group aims to extend the core ontology for robotics and automation to represent more specific concepts and axioms that are commonly used in autonomous robots. Design/methodology/approach For autonomous robots, various concepts for aerial robots, underwater robots and ground robots are described. Components of an autonomous system are defined, such as robotic platforms, actuators, sensors, control, state estimation, path planning, perception and decision-making. Findings AuR has identified the core concepts and domains needed to create an ontology for autonomous robots. Practical implications AuR targets to create a standard ontology to represent the knowledge and reasoning needed to create autonomous systems that comprise robots that can operate in the air, ground and underwater environments. The concepts in the developed ontology will endow a robot with autonomy, that is, endow robots with the ability to perform desired tasks in unstructured environments without continuous explicit human guidance. Originality/value Creating a standard for knowledge representation and reasoning in autonomous robotics will have a significant impact on all R&A domains, such as on the knowledge transmission among agents, including autonomous robots and humans. This tends to facilitate the communication among them and also provide reasoning capabilities involving the knowledge of all elements using the ontology. This will result in improved autonomy of autonomous systems. The autonomy will have considerable impact on how robots interact with humans. As a result, the use of robots will further benefit our society. Many tedious tasks that currently can only be performed by humans will be performed by robots, which will further improve the quality of life. To the best of the authors’knowledge, AuR is the first group that adopts a systematic approach to develop ontologies consisting of specific concepts and axioms that are commonly used in autonomous robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.