Engineered stone (ENS) is a type of artificial stone composed of stone wastes bonded together by a polymeric matrix. ENS presents a profitable alternative for solid waste management, since its production adds value to the waste by reusing it as raw material and reduces environmental waste disposal. The present work’s main goal is to produce an ENS based on quartz powder waste, glass packaging waste, and epoxy resin. The wastes were size-distributed by the fine sieving method. Then, the closest-packed granulometric mixture, as well as the minimum amount of resin that would fill the voids of these mixtures, was calculated. ENS plates were prepared with 15%wt (ENS-15) and 20%wt (ENS-20) epoxy resin by vibration, compression (10 tons for 20 min at 90 °C), and vacuum of 600 mmHg. The plates were sanded and cut for physical, chemical, and mechanical tests. Scanning electron microscopy analysis of fractured specimens was performed. ENS-15 presented 2.26 g/cm3 density, 0.1% water absorption, 0.21% apparent porosity, and 33.5 MPa bend strength and was resistant to several chemical and staining agents. The results classified ENS as a high-quality coating material, technically and economically viable, with properties similar to commercial artificial stones. Therefore, the development of ENS based on waste glass and quartz powder meets the concept of sustainable development, as this proposed novel material could be marketed as a building material and simultaneously minimize the amount of these wastes that are currently disposed of in landfills.
ResumoCom a eclosão dos resíduos sólidos provenientes de lâmpadas fluorescentes no meio ambiente, consideradas poluentes contaminantes, as rochas artificiais surgem como um escape sustentável para comercialização e reciclagem desse material afim de evitar poluições. O objetivo do projeto é avaliar o efeito da incorporação do resíduo de lâmpadas fluorescentes provenientes da reciclagem em rochas artificiais com uso de uma matriz polimérica afim de analisar, determinar e avaliar as rochas com intenção de verificar a aprovação das propriedades físicas e mecânicas, podendo assim quantificar valores ao produto para possíveis surgimentos de stakeholders. A metodologia foi o processo "Vibração, Compressão e Vácuo" que atualmente é utilizada pela indústria de rocha artificial compactada. Nesse processo o resíduo foi misturado com a resina polimérica vegetal poliuretano e posteriormente submetido a temperatura de 80ºC sob pressão de 10ton promovendo a polimerização. A rocha artificial com resíduo de lâmpada passou por um processo de cura e foi submetida aos testes. Os resultados obtidos para a densidade foram de 2,18g/cm³, porosidade de 1,84 ± 0,17% e absorção de água 0,84 ± 0,07%. A tensão máxima de ruptura foi de 18,62 MPa e boa resistência ao ataque químico. O produto inovador demonstra ser compatível com rochas artificiais comercializadas. Concluise que a rocha produzida apresenta uma qualidade média, podendo ser aplicada em algumas áreas na construção civil, em áreas internas como paredes, pisos convencionais e pisos flutuantes; com eventual utilização de água.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.