Fluorescent proteins from the green fluorescent protein (GFP) family interact strongly with CdSe/ZnS quantum dots. Photoluminescence of GFP5 is suppressed by red-emitting CdSe/ZnS quantum dots with high efficiency in a pH-dependent manner. The elevated degree of quenching, around 90%, makes it difficult to analyze the remaining signal, and it is not clear yet whether FRET is the reason behind the quenching. When the donor is a green-emitting CdSe/ZnS quantum dot and the acceptor is the HcRed1 protein, it is possible to detect quenching of the donor and sensitized emission from the acceptor. It was verified that the sensitized emission has the low anisotropy characteristic of FRET. The present characterization identifies donor-acceptor pairs formed by fluorescent proteins and CdSe/ZnS quantum dots that are suitable for the exploration of cellular events. These donor-acceptor pairs take advantage of the exceptional photochemical properties of quantum dots allied with the unique ability of fluorescent proteins to act as gene-based fluorescent probes.
The large cytoplasmic domain of rabbit sarcoplasmic reticulum Ca2+-ATPase was overexpressed in Escherichia coli as a 48 kDa fusion protein, designated p48, containing an N-terminal hexa-His tag. Purification conditions were optimized, thus conferring long-term stability to p48. Circular dichroism spectroscopy and the pattern of limited trypsinolysis confirmed the proper folding of the domain. p48 retained 0.5 +/- 0.1 mol of high affinity 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5'-triphosphate (TNP-ATP) binding sites per mol of polypeptide chain with an apparent dissociation constant of about 8 microM. Size-exclusion FPLC using protein concentrations in the range 0.03 5 mg/ml showed that p48 was essentially monodisperse with apparent molecular mass and Stokes radius (Rs) values compatible with a dimer (100 kDa and 40 A, respectively). Analysis of p48 by small-angle X-ray scattering provided an independent second proof for a dimeric p48 particle with a radius of gyration (Rg) of 39 A, suggesting that the dimer was not spherical (Rs/Rg = 1.026). When digested by proteinase K, p48 was converted to a 30 kDa fragment, designated p30, which was very resistant to further proteolysis. p30 retained high affinity TNP-ATP binding (Kd = 8 microM) and eluted as a monomer (35 kDa) in size-exclusion FPLC. As opposed to p48, the p30 fragment did not react with monoclonal antibody A52 [Clarke et al., J. Biol. Chem. 264 (1989) 11246-11251] which recognizes region E657-R672 located upstream of the hinge domain of the Ca2+-ATPase. These results indicate a requirement of the hinge domain (670-728) region for self-association of the p48 large hydrophilic domain as a dimer. We propose that this behavior points to a possible role of the hinge domain in dimerization of sarcoplasmic reticulum Ca2+-ATPase in the native membrane.
Fluorescent proteins from the green fluorescent protein family strongly interact with CdSe/ZnS and ZnSe/ZnS nanocrystals at neutral pH. Green emitting CdSe/ZnS nanocrystals and red emitting fluorescent protein dTomato constitute a 72% efficiency FRET system with the largest alteration of the overall photoluminescence profile, following complex formation, observed so far. The substitution of ZnSe/ZnS for CdSe/ZnS nanocrystals as energy donors enabled the use of a green fluorescent protein, GFP5, as energy acceptor. Violet emitting ZnSe/ZnS nanocrystals and green GFP5 constitute a system with 43% FRET efficiency and an unusually strong sensitized emission. ZnSe/ZnS-GFP5 provides a cadmium-free, high-contrast FRET system that covers only the high-energy part of the visible spectrum, leaving room for simultaneous use of the yellow and red color channels. Anisotropic fluorescence measurements confirmed the depolarization of GFP5 sensitized emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.