Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in a variety of neurological disabilities, including stroke and seizures. Linkage analyses using autosomal dominant families manifesting CCMs have identified three different causative loci on chromosomes 7q21.2 (CCM1), 7p13 (CCM2), and 3q25.2-q27 (CCM3). Mutations in the gene Krit1 are responsible for CCM1, mutations in the gene MGC4607 are responsible for CCM2, and mutations in the gene PDCD10 were recently reported to be responsible for CCM3. We report here that sequence analysis of PDCD10 in a panel of 29 probands lacking Krit1 and MGC4607 mutations revealed only three mutations. The frequency of identified mutations in the PDCD10 gene was surprisingly low, especially given that this panel was heavily biased towards non-CCM1, non-CCM2 probands. These data are in stark contrast with the linkage data, which suggests that 40% of inherited cases would be due to mutations in this gene. Interestingly, when examining the haplotypes of previously published CCM3 families, we found a distinct recombination event in one of the largest CCM3 families that excludes the PDCD10 gene. Although there are many potential explanations for this observation, when combined with the apparent underrepresentation of causative CCM mutations in PDCD10, this recombination event in a CCM3-linked family suggests that there may be an additional CCM gene in the same chromosomal region.
We analyzed a population of juvenile Huntington disease (HD) subjects of Italian origin (n = 57). The main aim of this study was to analyze the gender effect of the affected parent on age at onset and clinical presentation of offspring with juvenile HD. We also analyzed molecular features of the disease, including CAG mutation length and GluR6 gene polymorphism, according to the affected parent's gender. The mutation length was longer in paternally than in maternally transmitted HD juvenile patients (P = 0.025), nevertheless a similar mean early onset in the two groups (P > 0.05). This data was even enforced by that obtained from the whole cohort of patients included in the databank (n = 600) where, in the presence of increased mean parent-child CAG repeat change in paternal vs. maternal meiotic transmissions (+7.3 vs. +0.7 CAG, P = 0.0002), the mean parent-child year-of-onset change was similar in the two groups (-10.4 and -7.0 years, P > 0.05). A lower TAA-triplet in GluR6 was associated with an earlier age at onset in juvenile patients (P = 0.031, R2 = 0.10). When we added the GluR6 effect on age at onset to the CAG expanded number effect (P = 0.0001, R2 = 0.68) by multiple regression approach, the coefficient of determination R2 increased to 0.81. This effect in addition to the expanded CAG repeat number, found in juvenile and not in adult patients, was slightly enforced by paternal compared to maternal transmissions (R2=0.82). Our findings suggest the occurrence of a weaker effect of the paternal mutation on juvenile age at onset in our population, possibly amplified by other genetic factors, such as the TAA-triplet length in the GluR6 gene.
Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.
The tubulinopathies refer to a wide range of brain malformations caused by mutations in one of the seven genes encoding different tubulin's isotypes. The β‐tubulin isotype III (TUBB3) gene has a primary function in nervous system development and axon generation and maintenance, due to its neuron‐specific expression pattern. A recurrent heterozygous mutation, c.1228G > A; p.E410K, in TUBB3 gene is responsible of a rare disorder clinically characterized by congenital fibrosis of the extraocular muscle type 3 (CFEOM3), intellectual disability and a wide range of neurological and endocrine abnormalities. Other mutations have been described spanning the entire gene and genotype–phenotype correlations have been proposed. We report on a 3‐year‐old boy in whom clinical exome sequencing allowed to identify a de novo TUBB3 E410K mutation as the molecular cause underlying a complex phenotype characterized by a severe bilateral palpebral ptosis refractory to eye surgery, psychomotor delay, absent speech, hypogonadism, celiac disease, and cyclic vomiting. Brain MRI revealed thinning of the corpus callosum with no evidence of malformation cortical dysplasia. We reviewed available records of patients with TUBB3 E410K mutation and compared their phenotype with the clinical outcome of patients with other mutations in TUBB3 gene. The present study confirms that TUBB3 E410K results in a clinically recognizable phenotype, unassociated to the distinct cortical dysplasia caused by other mutations in the same gene. Early molecular characterization of TUBB3 E410K syndrome is critical for targeted genetic counseling and prompt prospective care in term of neurological, ophthalmological, endocrine, and gastrointestinal follow‐up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.