Interest in biochar production from organic waste has been growing in recent years due to its broad applicability, availability, and smoother production. Biochar production techniques are being continuously modernized to improve the production rate and quality. Though numerous methods have been reported in the recent past, a systematic classification of the same is yet to be explored. Based on the advancement of the techniques being employed for biochar production and modification of conventional methods, we have categorized all major techniques of biochar production into two primary classes. In the traditional approach, ancient methods and conventional pyrolysis techniques (Slow and Fast pyrolysis) are included, whereas, in modern approaches, several advanced technologies such as Gasification, Torrefaction, Hydrothermal carbonization, Electro-modification, along with modified traditional methods (Flash pyrolysis, Vacuum pyrolysis, and Microwave pyrolysis) are comprised. Further, the systematic review was intended to evaluate various types of feedstocks (agricultural biomass, forest/woody biomass, aquatic biomass, urban waste, and paper waste) with their potential to produce biochar. It was observed that the feedstock containing high cellulose was found to be helpful in improving the overall properties of biochar, including enhanced adsorptive action and retention of nutrients.
Garden biomass (GB) is defined as low density and heterogeneous waste fraction of garden rubbish like grass clippings, pruning, flowers, branches, weeds; roots. GB is generally different from other types of biomass. GB is mostly generated through maintenance of green areas. GB can be processed for bio energy production as it contains considerably good amount of cellulose and hemicellulose. However, pretreatment is necessary to delignify and facilitate disruption of cellulosic moiety. The aim of the present investigation was to pretreat GB using Fenton’s reagent and to study the influence of Fe2+ and H2O2 concentrations on degradation of lignin and cellulose. The data were statistically analyzed using ANOVA and numerical point prediction tool of MINITAB RELEASE 14 to optimize different process variables such as temperature, concentration of Fe2+ and H2O2. The results of the present investigation showed that Fenton’s reagent was effective on GB, however, concentration of Fe2+ and H2O2 play crucial role in determining the efficiency of pretreatment. An increase in H2O2 concentration in Fenton’s reagent significantly increased the rate of cellulose and lignin degradation in contrast to increasing concentration of Fe2+ ion which led to a decrease in lignocellulosic degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.