We combine experiment and theory to investigate the cooperation or competition between organic and inorganic structure-directing agents (SDAs) for occupancy within microporous voids of chabazite (CHA) zeolites and to rationalize the effects of SDA siting on biasing the framework Al arrangement (Al–O(−Si–O) x –Al, x = 1–3) among CHA zeolites of essentially fixed composition (Si/Al = 15). CHA zeolites crystallized using mixtures of TMAda+ and Na+ contain one TMAda+ occluded per cage and Na+ co-occluded in an amount linearly proportional to the number of 6-MR paired Al sites, quantified by Co2+ titration. In contrast, CHA zeolites crystallized using mixtures of TMAda+ and K+ provide evidence that three K+ cations, on average, displace one TMAda+ from occupying a cage and contain predominantly 6-MR isolated Al sites. Moreover, CHA crystallizes from synthesis media containing more than 10-fold higher inorganic-to-organic ratios with K+ than with Na+ before competing crystalline phases form, providing a route to decrease the amount of organic SDA needed to crystallize high-silica CHA. Density functional theory calculations show that differences in the ionic radii of Na+ and K+ determine their preferences for siting in different CHA rings, which influences their energy to co-occlude with TMAda+ and stabilize different Al configurations. Monte Carlo models confirm that energy differences resulting from Na+ or K+ co-occlusion promote the formation of 6-MR and 8-MR paired Al arrangements, respectively. These results highlight opportunities to exploit using mixtures of organic and inorganic SDAs during zeolite crystallization in order to more efficiently use organic SDAs and influence framework Al arrangements.
p‐Xylene is a major commodity chemical used for the production of polyethylene terephthalate, a polymer with applications in polyester fibers, films, and bottles. The Diels–Alder cycloaddition of 2,5‐dimethylfuran and ethylene and the subsequent dehydration of the cycloadduct intermediate is an attractive reaction pathway to produce renewable p‐xylene from biomass feedstocks. However, the highest yields reported previously do not exceed 75 %. We report that P‐containing zeolite Beta is an active, stable, and selective catalyst for this reaction with an unprecedented p‐xylene yield of 97 %. It can catalyze the dehydration reaction selectively from the furan‐ethylene cycloadduct to p‐xylene without the production of alkylated and oligomerized products. This behavior is distinct from that of Al‐containing zeolites and other solid phosphoric acid catalysts and establishes a commercially attractive process for renewable p‐xylene production.
Nanostructured catalysts often face an important challenge: poor stability. Many factors contribute to catalytic degradation, including parasitic chemical reactions, phase separation, agglomeration, and dissolution, leading to activity loss especially during long-term catalytic reactions. This challenge is shared by a new family of catalysts, multimetallic nanoparticles, which have emerged owing to their broad tunability and high activity. While significant synthesis-based advances have been made, the stability of these nanostructured catalysts, especially during catalytic reactions, has not been well addressed. In this study, we reveal the critical influence of a synthetic method on the stability of nanostructured catalysts through aprotic oxygen catalysis (Li-O2 battery) demonstrations. In comparison to the conventional wet impregnation (WI) method, we show that the carbothermal shock (CTS) method dramatically improves the overall structural and chemical stability of the catalyst with the same elemental compositions. For multimetallic compositions (4- and 8-elements), the overall stability of the electrocatalysts as well as the battery lifetime can be further improved by incorporating additional noncatalytically active elements into the individual nanoparticles via CTS. The results offer a new synthetic path toward the stabilization of nanostructured catalysts, where additional reaction schemes beyond oxygen electrocatalysis are foreseeable.
The as-synthesized Zr-SBA-15 catalysts with tunable mesoporous structures showed excellent catalytic performance for the conversion of carbohydrates to methyl lactate in a "onepot" process using near-critical methanol or methanol-water mixture as the solvents. The effects of reaction conditions, including temperature, reaction time, and catalyst loading amount, on the conversions of carbohydrates and the yields of methyl lactate were investigated. The high yields of methyl lactate, up to 41 % and 44%, were produced from pentose and hexose, respectively, in the near-critical methanol at 240°C. Moreover, the Si/Zr ratio of the Zr-SBA-15 catalysts profoundly affected the Lewis acidity and therefore the catalytic activity and selectivity to methyl lactate in the conversion of carbohydrates. The pore size of the Zr-SBA-15 catalysts, tuned by the synthesis temperature, strongly affected the formation of solid residues. The key intermediates such as glyceraldehyde, glycolaldehyde, and pyruvaldehyde were used as probe reactants to understand the mechanism. The role of the Zr-SBA-15 catalyst in the aldol-and retro-aldol condensation, isomerization, and Cannizzaro reactions of carbohydrates and their derivatives was discussed. Furthermore, 28% and 27% yields of methyl lactate were obtained from cellulose and starch, respectively, in methanol-water mixture (5 wt% water and 95 wt% methanol) at 240°C. The Zr-SBA-15 catalyst was relatively stable in short term without regeneration.
Hierarchical materials with porous structures at different length scales (i.e., micropore and mesopore) are an emerging class of materials. However, the lack of fundamental understanding of mass transport properties significantly limits rational development of these materials for applications in catalysis and separation. In this study, we evaluated the mass transport of two probe molecules, cyclohexane and 1-methylnaphthalene, in two different types of hierarchical porous materials, SBA-15 mesoporous silica and three dimensionally ordered mesoporous imprinted (3DOm-i) silicalite-1 zeolite, for comparison with nonmicroporous MCM-41 mesoporous silica. It was observed that the apparent diffusion lengths determined for hierarchical porous materials (i.e., SBA-15 and 3DOm-i silicalite-1) were significantly longer than predicted by the physical structure (i.e., radius) of the adsorbent particle, indicating that diffusion of molecules in hierarchical porous materials is much longer than expected. The unusually long path length is likely due to diffusion on the external surface, followed by re-entering of diffusing molecules from the external surface into the micropores; the large external surface area of hierarchical porous materials enhances the extent of this phenomenon. The observations reported in the study highlight the importance of surface diffusion in hierarchical porous materials. Enhanced mass transport in hierarchical porous materials can be overpredicted without considering the extent of sorbate–sorbent interaction and the actual diffusion length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.