The main control strategy for Ascaris lumbricoides is mass drug administration (especially with benzimidazoles), which can select strains of parasites resistant to treatment. Mutations in the beta-tubulin isotype-1 gene at codons 167, 198 and 200 have been linked to benzimidazole resistance in several nematodes. The mutation in codon 200 is the most frequent in different species of parasites, as previously observed in Necator americanus and Trichuris trichiura; however, this mutation has never been found in populations of A. lumbricoides. This study aimed to screen for single nucleotide polymorphisms (SNPs) in the beta-tubulin isotype-1 gene at codon 200 in A. lumbricoides. We developed a technique based on an amplification refractory mutation system (ARMS-PCR) for the analysis of 854 single A. lumbricoides eggs collected from 68 human stool samples from seven Brazilian states. We detected the mutation in codon 200 at a frequency of 0.5% (4/854). This is the first report of this mutation in A. lumbricoides. Although the observed frequency is low, its presence indicates that these parasite populations have the potential to develop high levels of resistance in the future. The methodology proposed here provides a powerful tool to screen for the emergence of anthelmintic resistance mutations in parasitic nematode populations.
Hookworms are intestinal parasites that cause major public health problems, especially in developing countries. To differentiate eggs from different hookworm species, it is necessary to use molecular methodologies, since the eggs are morphologically similar. Here, we performed the molecular identification of single hookworm eggs from six Brazilian states. Of the 634 eggs individually analyzed, 98.1% (622/634) represented Necator americanus, and surprisingly, 1.9% (12/634 eggs from the same patient) represented Ancylostoma caninum. DnA analysis of the A. caninum-positive stool sample revealed no contamination with animal feces. This is the first report of the presence of A. caninum eggs in human feces, which may have a direct implication for the epidemiology of hookworm infection caused by this species. This suggests the need for special attention regarding prophylaxis, as different reservoirs, previously not described, may have great relevance for the spread of A. caninum.
Definitive diagnosis of hookworm infection is usually based on the microscopic detection of eggs in a stool sample; however, several cases display a low or irregular egg output. Serodiagnosis can be a useful tool to identify these cases, but conventional tests do not differentiate past from active infections. The aim of this study was to obtain and apply egg yolk polyclonal immunoglobulin (IgY) antibodies to detect immune complexes (ICs) in serum samples from patients infected with hookworm. Hens were immunized with Ancylostoma ceylanicum saline extract, their eggs were collected and then IgY antibodies were extracted and purified. Antibody purity was tested by 12% sodium dodecyl sulphate polyacrylamide gel electrophoresis and specificity was assessed by immunoblotting and immunofluorescence. IgY production was evaluated by kinetics enzyme-linked immunosorbent assay (ELISA). Sandwich ELISA tested the ability of IgY to detect ICs in serum samples, from which diagnostic parameters were calculated. Antibody responses increased steadily from day 7 to 42. In the immunoblotting assay, IgY recognized two protein complexes. The immunofluorescence assay showed no staining in control samples. The sandwich ELISA presented a very high diagnostic value, with a sensitivity of 90% and a specificity of 86.7%. Our pioneer strategy highlights the potential use of egg yolk IgY as a diagnostic test to detect active hookworm infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.