Reports of birth defects rates may focus on defects observed in the newborn period or include defects diagnosed at older ages. However, little information is available on the rates of additional anomalies detected after birth or on the ages at which such anomalies are diagnosed. The aims of this work were to describe the initial diagnoses of oral clefts, isolated or associated with other defects, in newborn infants ascertained in hospitals of the ECLAMC network, and diagnostic changes that occurred due to detection of additional defects during a one-year follow-up period. Seven hundred ten liveborn infants with cleft lip only (CLO), cleft lip with cleft palate (CLP), or cleft palate (CP) were ascertained between 2003 and 2005. Prevalence estimates of isolated and associated clefts, diagnoses in infants with associated clefts, and the percentage of isolated clefts that were reclassified as associated were established. Birth prevalence estimates (per 1,000) were as follows: Total: 1.7; CLP: 0.94 (ASO=23.5%); CP: 0.46 (ASO=42.3%); CLO: 0.28 (ASO=7.6%). Initial diagnoses in infants with associated clefts included 38 infants with chromosomal abnormalities, 33 with non-chromosomal syndromes, 16 with malformation sequences, and 98 with multiple anomalies of unknown etiology. Seven percent of newborns initially classified as isolated were later reclassified as associated. Ten infants without associated defects or clinically suspected syndromes were diagnosed as syndromic only through laboratory findings or family history, illustrating the difference between the terms associated vs. isolated, which refers to presence or absence of associated anomalies, and syndromic vs. non-syndromic, which refers to etiology.
Visceral motility dysfunction is a key feature of genetic disorders such as megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS, MIM moved from 249210 to 155310), chronic intestinal pseudo-obstruction (CIPO, MIM609629), and multisystemic smooth muscle dysfunction syndrome (MSMDS, MIM613834). The genetic bases of these conditions recently begun to be clarified with the identification of pathogenic variants in ACTG2, ACTA2, and MYH11 in individuals with visceral motility dysfunction. The MMIHS was associated with the heterozygous variant in ACTG2 and homozygous variant in MYH11, while the heterozygous variant in ACTA2 was observed in patients with MSMDS. In this study, we describe the clinical data as well as the molecular investigation of seven individuals with visceral myopathy phenotypes. Five patients presented with MMIHS, including two siblings from consanguineous parents, one had CIPO, and the other had MSMDS. In three individuals with MMIHS and in one with CIPO we identified heterozygous variant in ACTG2, one being a novel variant (c.584C>T—p.Thr195Ile). In the individual with MSMDS we identified a heterozygous variant in ACTA2. We performed the whole-exome sequencing in one sibling with MMIHS and her parents; however, the pathogenic variant responsible for her phenotype could not be identified. These results reinforce the clinical and genetic heterogeneity of the visceral myopathies. Although many cases of MMIHS are associated with ACTG2 variants, we suggest that other genes, besides MYH11, could cause the MMIHS with autosomal recessive pattern.
BackgroundPreterm birth (PTB) is a complex disorder associated with significant neonatal mortality and morbidity and long-term adverse health consequences. Multiple lines of evidence suggest that genetic factors play an important role in its etiology. This study was designed to identify genetic variation associated with PTB in oxytocin pathway genes whose role in parturition is well known.MethodsTo identify common genetic variants predisposing to PTB, we genotyped 16 single nucleotide polymorphisms (SNPs) in the oxytocin (OXT), oxytocin receptor (OXTR), and leucyl/cystinyl aminopeptidase (LNPEP) genes in 651 case infants from the U.S. and one or both of their parents. In addition, we examined the role of rare genetic variation in susceptibility to PTB by conducting direct sequence analysis of OXTR in 1394 cases and 1112 controls from the U.S., Argentina, Denmark, and Finland. This study was further extended to maternal triads (maternal grandparents-mother of a case infant, N=309). We also performed in vitro analysis of selected rare OXTR missense variants to evaluate their functional importance.ResultsMaternal genetic effect analysis of the SNP genotype data revealed four SNPs in LNPEP that show significant association with prematurity. In our case–control sequence analysis, we detected fourteen coding variants in exon 3 of OXTR, all but four of which were found in cases only. Of the fourteen variants, three were previously unreported novel rare variants. When the sequence data from the maternal triads were analyzed using the transmission disequilibrium test, two common missense SNPs (rs4686302 and rs237902) in OXTR showed suggestive association for three gestational age subgroups. In vitro functional assays showed a significant difference in ligand binding between wild-type and two mutant receptors.ConclusionsOur study suggests an association between maternal common polymorphisms in LNPEP and susceptibility to PTB. Maternal OXTR missense SNPs rs4686302 and rs237902 may have gestational age-dependent effects on prematurity. Most of the OXTR rare variants identified do not appear to significantly contribute to the risk of PTB, but those shown to affect receptor function in our in vitro study warrant further investigation. Future studies with larger sample sizes are needed to confirm the findings of this study.
A previous pregnancy loss was identified as the main risk factor for gastroschisis, while an increased use of sex hormones, perhaps related to the previous loss, could trigger a disruptive mechanism, due to their thrombophilic effect.
BackgroundHistorically, neural tube defects (NTDs) have predominated in female infants but the reasons remain unclear. In South America, the pre- folic acid fortification (FAF) rates of NTDs were around 18/10,000 births for females and 12/10,000 births for males, with an estimated sex ratio (male/female) of 0.67. During the post- FAF period, unpublished routine reports have indicated changes in the sex ratio for these defects while some descriptive reports are controversial. To date and to our knowledge, however, no studies specifically focusing on these changes to test this hypothesis directly have been undertaken. The aim of this study was to analyze changes in the sex ratio of infants with NTDs after FAF in South American countries.Materials and methodsWith a descriptive cross-sectional study design, 2,597 infants with isolated NTDs born between 1990 and 2013 in 3 countries participating in the Latin American Collaborative Study of Congenital Malformations (ECLAMC) network were included: (Chile N = 521 and Argentina N = 1,619 [with FAF policies]; Venezuela N = 457 [without FAF policies; used as control]; total births = 2,229,561). The differences-in-differences method and Poisson regressions were used to evaluate the sex ratio shift from female to male before vs. after FAF, and to assess whether these differences were related to the fortification.Results and conclusionsIn Chile and Argentina the prevalence of NTDs, particularly anencephaly and cervico-thoracic spina bifida, showed a greater reduction rate in females than in males after FAF, resulting in a change of the sex ratio of infants with NTDs. Some mechanisms possibly involved in this differential reduction are proposed which might be useful to identify the pathogenesis of NTDs as a whole and specifically of those susceptible to the protective effect of folic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.