Introduction: Thermography is a surface thermal radiation measurement technique whose application has been expanding in the healthcare field. The unhealed wound is a serious public health problem because it intervenes in the quality of life of patients and may cause emotional and psychological losses. The wound temperature can provide quantitative data that allow for the healing process to be monitored. The aim of this study was to verify whether thermography can be used as a method to evaluate the healing of pressure ulcers. Methods: Eight participants with sacral pressure ulcers were recruited and randomly divided into two groups: A (control) and B (experimental). Both groups received standard treatment for a period of four weeks, which consisted of a daily cleaning of the pressure ulcers with physiological saline (sodium chloride 0.9%) followed by an alginate hydrogel dressing. The group B received light-emitting diode (LED) phototherapy in addition to standard treatment, three times a week, yielding a total of 12 sessions. Photographs and thermograms of each pressure ulcer were obtained in all sessions in both groups. Results: Pressure ulcers treated with LED phototherapy were healed. The pressure ulcer area of group B decreased over the 12 treatment sessions, whereas the pressure ulcer area of group A increased. The ulcer temperature of group B was higher than that of group A during the treatment (temperature difference up to 7.6%). Discussion: The present study suggests a relationship between the temperature and area of pressure ulcers and proposes thermography as an adjunctive method for the evaluation of healing processes.
O conhecimento de variáveis e funções hidrológicas em uma dada seção fluvial, bem como de suas séries temporais de vazões médias diárias, viabiliza o planejamento, o projeto e a operação de estruturas de aproveitamento de recursos hídricos, em bacias hidrográficas monitoradas. Nas bacias desprovidas de registros sistemáticos de cota e descarga, no entanto, faz-se necessário desenvolver metodologias que possibilitem a transferência das informações hidrológicas existentes em outras bacias. O presente estudo propõe e avalia um método para calibração automática de um modelo chuva-vazão em bacias sem monitoramento hidrométrico, utilizando como paradigma do processo hidrológico a curva de permanência sintética de longo período, obtida a partir de um modelo estatístico regional. Neste contexto, as curvas de permanência de longo período constituem funções características próprias do regime hidrológico da bacia hidrográfica em estudo e são aqui usadas como instrumento para calibração dos parâmetros de um modelo conceitual chuva-vazão. Uma vez obtidos os parâmetros que comandam a síntese hidrológica do modelo em questão, a simulação contínua de descargas, ao longo de um dado período de tempo, viabiliza avaliações hidrológicas diversas, tais como a análise de freqüência de eventos raros, o balanço hídrico de reservatórios, os estudos de amortecimento de cheias e de disponibilidades hídricas. A metodologia aqui apresentada compõe-se basicamente de duas partes. Na primeira delas, é proposto um método para regionalização de curvas de permanência de longo período, permitindo a transferência dessa função hidrológica a locais não-monitorados, desde que esses se localizem na mesma região homogênea das bacias com dados. Na segunda etapa, é realizada a calibração do modelo chuva-vazão RIO GRANDE tendo como objetivo simular as curvas de permanência sintetizadas a partir do modelo regional. Em ambas as fases, são calculados alguns índices de desempenho, cujo objetivo é avaliar a confiabilidade proporcionada pelos procedimentos envolvidos.
Uncertainty estimation analysis has emerged as a fundamental study to understand the effects of errors inherent to hydrodynamic modeling processes, of aleatory and epistemic nature, due to input data such as discharge, topography and bathymetry, to the structure and parameterization of the mathematical models used and to their necessary boundary and initial conditions. The study reported in this paper sought to apply a Bayesian-based methodology, associated with thousands of Markov Chain Monte Carlo simulations, in order to identify and quantify the uncertainty related to the Manning’s n roughness coefficient in a 1D hydrodynamic model and the total uncertainty involved in the prediction of hydrographs and water surface elevation profiles resulting from flood routing through a reach located in the upper São Francisco river, between the Abaeté river outlet and the town of Pirapora. The results show that the Bayesian scheme allowed an adequate posterior identification of the parametric uncertainties and of those associated to other sources of errors, with important changes in the prior probability distributions. In addition, the residuals analysis corroborates the applicability of the method to the analysis of uncertainties in hydrodynamic modeling through the use of a more flexible likelihood function than the classical one based on the hypotheses of normality, homoscedasticity and uncorrelated residuals. Future work includes the sensitivity evaluation of the posterior distributions to the addition of lateral inflows, especially concerning the residuals serial correlation, as well as the adoption of other variables to update the prior uncertainties, and the validation of the methodology through the use of the posterior distributions to estimate the total uncertainty involved in the prediction of floods other than the ones used in the inference process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.