Transitions between saline and fresh waters have been shown to be infrequent for microorganisms. Based on host-specific interactions, the presence of specific clades among hosts suggests the existence of freshwater-specific viral clades. Yet, little is known about the composition and diversity of the temperate freshwater viral communities, and even if freshwater lakes and marine waters harbor distinct clades for particular viral sub-families, this distinction remains to be demonstrated on a community scale.To help identify the characteristics and potential specificities of freshwater viral communities, such communities from two lakes differing by their ecological parameters were studied through metagenomics. Both the cluster richness and the species richness of the Lake Bourget virome were significantly higher that those of the Lake Pavin, highlighting a trend similar to the one observed for microorganisms (i.e. the specie richness observed in mesotrophic lakes is greater than the one observed in oligotrophic lakes). Using 29 previously published viromes, the cluster richness was shown to vary between different environment types and appeared significantly higher in marine ecosystems than in other biomes. Furthermore, significant genetic similarity between viral communities of related environments was highlighted as freshwater, marine and hypersaline environments were separated from each other despite the vast geographical distances between sample locations within each of these biomes. An automated phylogeny procedure was then applied to marker genes of the major families of single-stranded (Microviridae, Circoviridae, Nanoviridae) and double-stranded (Caudovirales) DNA viruses. These phylogenetic analyses all spotlighted a very broad diversity and previously unknown clades undetectable by PCR analysis, clades that gathered sequences from the two lakes. Thus, the two freshwater viromes appear closely related, despite the significant ecological differences between the two lakes. Furthermore, freshwater viral communities appear genetically distinct from other aquatic ecosystems, demonstrating the specificity of freshwater viruses at a community scale for the first time.
The search for a better understanding of why cyanobacteria often dominate phytoplankton communities in eutrophic freshwater ecosystems has led to a growing interest in the interactions between cyanobacteria and bacteria. Against this background, we studied the location of bacteria within Microcystis colonies, and compared the structural and phylogenetic diversity of Microcystis-attached and free-living bacterial communities living in the same French lake, the Villerest reservoir. Using transmission electron microscopy, we show that most of the bacteria inside the colonies were located close to detrital materials that probably resulted from lysis of Microcystis cells. The 16S rRNA sequencing approach revealed a clear distinction between the attached and free-living communities at the levels of both their general structure and their operational taxonomic unit (OTU) composition. In particular, Microcystis colonies appeared to be depleted of Actinobacteria, but conversely enriched in Gammaproteobacteria, in particular when the bloom was declining. At the OTU level, a clear distinction was also found between attached and free-living bacteria, and new clades were identified among our sequences. All these findings suggest that Microcystis colonies constitute a distinct habitat for bacteria living in freshwater ecosystems, and that direct and indirect interactions (cell lysis, nutrient recycling, etc.) may occur between them inside these colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.