Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments.
The potential ecotoxicity of nanosized zinc oxide (ZnO), synthesized by the polyol process, was investigated using common Anabaena flos-aquae cyanobacteria and Euglena gracilis euglenoid microalgae. The photosynthetic activities of these microorganisms, after addition of ZnO nanoparticles, varied with the presence of protective agents such as tri-n-octylphosphine oxide (TOPO) and polyoxyethylene stearyl ether (Brij-76) used to control particle size and shape during the synthesis. In the case of Anabaena flos-aquae , the photosynthetic activity, after addition of ZnO, ZnO-TOPO, and ZnO-Brij-76, decreased progressively due to stress induced by the presence of the nanoparticles in the culture medium. After contact with ZnO-TOPO nanoparticles, this decrease was followed by cell death. On the other hand, after 10 days, a progressive increase of the photosynthetic activity was observed after contact with ZnO and ZnO-Brij-76 nanoparticles. In the case of Euglena gracilis , cell death was observed after contact with all nanoparticles. Transmission electron microscopy (TEM) analyses of ultrathin sections of microorganisms showed that polysaccharides produced by Anabaena flos-aquae avoid particle internalization after contact with ZnO and ZnO-Brij-76 nanoparticles. On the other hand, nanoparticle internalization was observed after contact with all nanoparticles in the presence of Euglena gracilis and also with ZnO-TOPO nanoparticles after contact with Anabaena flos-aquae .
The search for a better understanding of why cyanobacteria often dominate phytoplankton communities in eutrophic freshwater ecosystems has led to a growing interest in the interactions between cyanobacteria and bacteria. Against this background, we studied the location of bacteria within Microcystis colonies, and compared the structural and phylogenetic diversity of Microcystis-attached and free-living bacterial communities living in the same French lake, the Villerest reservoir. Using transmission electron microscopy, we show that most of the bacteria inside the colonies were located close to detrital materials that probably resulted from lysis of Microcystis cells. The 16S rRNA sequencing approach revealed a clear distinction between the attached and free-living communities at the levels of both their general structure and their operational taxonomic unit (OTU) composition. In particular, Microcystis colonies appeared to be depleted of Actinobacteria, but conversely enriched in Gammaproteobacteria, in particular when the bloom was declining. At the OTU level, a clear distinction was also found between attached and free-living bacteria, and new clades were identified among our sequences. All these findings suggest that Microcystis colonies constitute a distinct habitat for bacteria living in freshwater ecosystems, and that direct and indirect interactions (cell lysis, nutrient recycling, etc.) may occur between them inside these colonies.
Paraconiothyrium variabile, one of the specific endophytic fungi isolated from the host plant Cephalotaxus harringtonia, possesses the faculty to inhibit the growth of common phytopathogens, thus suggesting a role in its host protection. A strong antagonism between the endophyte P. variabile and Fusarium oxysporum was observed and studied using optic and electronic microscopies. A disorganization of the mycelium of F. oxysporum was thus noticed. Interestingly, the biological effect of the main secondary metabolites isolated from P. variabile against F. oxysporum did not account for this strong antagonism. However, a metabolomic approach of pure fungal strains and confrontation zones using the data analysis tool XCMS were analyzed and pointed out a competition-induced metabolite production by the endophyte in the presence of the phytopathogen. Subsequent MS/MS fragmentations permitted to identify one of the induced metabolites as 13-oxo-9,11-octadecadienoic acid and highlighted a negative modulation of the biosynthesis of beauvericin, one of the most potent mycotoxin of F. oxysporum, during the competition with the endophyte.
International audienceThe biomineralization process and skeletal growth dynamics of azooxanthellate corals are poorly known. Here, the growth rate of the shallow-water dendrophyllid scleractinian coral Balanophyllia regia was evaluated with calcein-labeling experiments that showed higher lateral than vertical extension. The structure, mineralogy and trace element composition of the skeleton were characterized at high spatial resolution. The epitheca and basal floor had the same ultrastructural organization as septa, indicating a common biological control over their formation. In all of these aragonitic skeletal structures, two main ultrastructural components were present: “centers of calcification” (COC) also called rapid accretion deposits (RAD) and “fibers” (thickening deposits, TD). Heterogeneity in the trace element composition, i.e., the Sr/Ca and Mg/Ca ratios, was correlated with the ultrastructural organization: magnesium was enriched by a factor three in the rapid accretion deposits compared with the thickening deposits. At the interface with the skeleton, the skeletogenic tissue (calicoblastic epithelium) was characterized by heterogeneity of cell types, with chromophile cells distributed in clusters regularly spaced between calicoblasts. Cytoplasmic extensions at the apical surface of the calicoblastic epithelium created a three-dimensional organization that could be related to the skeletal surface microarchitecture. Combined measurements of growth rate and skeletal ultrastructural increments suggest that azooxanthellate shallow-water corals produce well-defined daily growth step
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.