Polymorphisms in CYP2C9 can significantly interfere with the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of nonsteroidal anti-inflammatory drugs (NSAIDs), including naproxen. The present research aimed to study the PK/PD parameters of naproxen and its metabolite, 6-O-desmethylnaproxen, associated with allelic variations of CYP2C9. In our study, a rapid, selective, and sensitive Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) method was developed and validated for the determination of naproxen and its main metabolite, 6-O-desmethylnaproxen, in oral fluid. Naproxen and its main metabolite were separated using a Shim-Pack XR-ODS 75L × 2.0 column and C18 pre-column at 40 °C using a mixture of methanol and 10 mM ammonium acetate (70:30, v/v), with an injection flow of 0.3 mL/min. The total analytical run time was 3 min. The volunteers, previously genotyped for CYP2C9 (16 ancestral—CYP2C9 *1 and 12 with the presence of polymorphism—CYP2C9 *2 or *3), had their oral fluids collected sequentially before and after taking a naproxen tablet (500 mg) at the following times: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6 8, 11, 24, 48, 72 and 96 h. Significant differences in the PK parameters (* p < 0.05) of naproxen in the oral fluid were: Vd/F (L): 98.86 (55.58–322.07) and 380.22 (261.84–1097.99); Kel (1/h): 0.84 (0.69–1.34) and 1.86 (1.09–4.06), in ancestral and mutated CYP2C9 *2 and/or *3, respectively. For 6-O-desmethylnaproxen, no PK parameters were significantly different between groups. The analysis of prostaglandin E2 (PGE2) proved to be effective and sensitive for PD parameters analysis and showed higher levels in the mutated group (p < 0.05). Both naproxen and its main metabolite, 6-O-desmethylnaproxen, and PGE2 in oral fluid can be effectively quantified using LC-MS/MS after a 500 mg oral dose of naproxen. Our method proved to be effective and sensitive to determine the lower limit of quantification of naproxen and its metabolite, 6-O-desmethylnaproxen, in oral fluid (2.4 ng/mL). All validation data, such as accuracy, precision, and repeatability intra- and inter-assay, were less than 15%. Allelic variations of CYP2C9 may be considered relevant in the PK of naproxen and its main metabolite, 6-O-desmethylnaproxen.
After performing liquid-liquid extraction with ethyl acetate and HCl, samples from 12 volunteers who performed sequential collections after taking a tablet of naproxen alone (n = 6) or associated with esomeprazole (n = 6) were analyzed in a triple quadrupole mass spectrometer 8040 LC MS/MS Shimadzu. Separation of naproxen and its main metabolite 6-O-desmethylnaproxen was performed in a Shim-Pack XR-ODS 75Lx2.0 column and C18 pre-column at 40°C using a mixture of methanol and ammonium acetate 10 mM (70:30, v/v) with an injection rate of 0.3 ml/min. The total analytical run time for each sample was 5 min. The association of naproxen with esomeprazole take considerably longer time to reach the maximum concentration [Tmax 0.17 h (interquartile range, 0.13–1.95) for naproxen alone and 13.18*h (interquartile range, 10.12–27.15) for naproxen with esomeprazole, p = 0.002], also to be eliminated [T1/2 0.12 h (interquartile range, 0.09–1.35) for naproxen alone and 9.16*h (interquartile range, 7.16–41.40) for naproxen with esomeprazole, p = 0.002] and lower maximum concentrations (Cmax 4.6 ± 2.5 ug/mL for naproxen alone and 2.04 ± 0.78* μg/mL, p = 0.038). The association of naproxen with esomeprazole showed increased values of AUC0-t [82.06* h*μg/mL (interquartile range, 51.90–157.00) with esomeprazole and 2.97 h*μg/mL (interquartile range, 1.82–7.84) naproxen alone, p = 0.002] in drug concentrations in relation to the naproxen tablet alone, probably, such differences are due to the delay in the absorption of naproxen when it is associated with the drug proton pump inhibitor, esomeprazole. As well as reduced values of full clearance when naproxen is combined with esomeprazole (0.07* μg/h (interquartile range, 0.005–0.01) with esomeprazole and 7.29 μg/h (interquartile range, 3.17–16.23) in naproxen alone, p = 0.002). Both naproxen and 6-O-desmethylnaproxen in saliva samples can be effectively quantified using LC-MS/MS, this methodology proved to be rapid, sensitive, accurate and selective for each drug and allows for the analysis of their pharmacokinetic parameters, in both situations.
A sensitive, selective and particularly fast method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the determination of meloxicam and its main metabolite, 5′-carboxymeloxicam, in oral fluid samples. Meloxicam and its major metabolite were separated using a Shim-Pack XR-ODS 75 L × 2.0 column and C18 pre-column at 40 °C using a mixture of methanol and 10 mM ammonium acetate (80:20, v/v) with an injection flow rate of 0.3 mL/min. The total time of the analytical run was 5 min. Sixteen volunteers had oral fluid samples collected sequentially before and after taking a meloxicam tablet (15 mg) for up to 96 h. With the concentrations obtained, the pharmacokinetic parameters were determined using the Phoenix WinNonlin software. The parameters evaluated for meloxicam and 5′-carboxymeloxicam in the oral fluid samples showed linearity, accuracy, precision, medium-quality control (MQC-78.12 ng/mL), high-quality control (HQC-156.25 ng/mL), lower limits of quantification (LLOQ-0.6103 ng/mL), low-quality control (LQC-2.44 ng/mL), stability and dilution. Prostaglandin E2 (PGE2) was also detected and quantified in the oral fluid samples, demonstrating the possibility of a pharmacokinetic/pharmacodynamic (PK/PD) study with this methodology. All the parameters evaluated in the validation of the methodology in the oral fluid samples proved to be stable and within the possible variations in each of the described parameters. Through the data presented, the possibility of a PK/PD study was demonstrated, detecting and quantifying meloxicam, its main metabolite and PGE2 in oral fluid samples using LC-MS/MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.