In this paper, we introduce a new transform for image processing, based on wavelets and the lifting paradigm. The lifting steps of a unidimensional wavelet are applied along a local orientation defined on a quincunx sampling grid. To maximize energy compaction, the orientation minimizing the prediction error is chosen adaptively. A fine-grained multiscale analysis is provided by iterating the decomposition on the low-frequency band. In the context of image compression, the multiresolution orientation map is coded using a quad tree. The rate allocation between the orientation map and wavelet coefficients is jointly optimized in a rate-distortion sense. For image denoising, a Markov model is used to extract the orientations from the noisy image. As long as the map is sufficiently homogeneous, interesting properties of the original wavelet are preserved such as regularity and orthogonality. Perfect reconstruction is ensured by the reversibility of the lifting scheme. The mutual information between the wavelet coefficients is studied and compared to the one observed with a separable wavelet transform. The rate-distortion performance of this new transform is evaluated for image coding using state-of-the-art subband coders. Its performance in a denoising application is also assessed against the performance obtained with other transforms or denoising methods.
Image watermarking is usually decomposed into three steps: i) some features are extracted from an image, ii) they are modified to embed the watermark, iii) and they are projected back into the image space while avoiding the creation of visual artefacts. The feature extraction is usually based on a classical image representation given by the Discrete Wavelet Transform or the Discrete Cosine Transform for instance. These transformations need a very accurate synchronisation and usually rely on various registration mechanisms for that purpose. This paper investigates a new family of transformation based on Deep Learning networks. Motivations come from the Computer Vision literature which has demonstrated the robustness of these features against light geometric distortions. Also, adversarial sample literature provides means to implement the inverse transform needed in the third step. This paper shows that this approach is feasible as it yields a good quality of the watermarked images and an intrinsic robustness.
Image watermarking is usually decomposed into three steps: (i) a feature vector is extracted from an image; (ii) it is modified to embed the watermark; (iii) and it is projected back into the image space while avoiding the creation of visual artefacts. This feature extraction is usually based on a classical image representation given by the Discrete Wavelet Transform or the Discrete Cosine Transform for instance. These transformations require very accurate synchronisation between the embedding and the detection and usually rely on various registration mechanisms for that purpose. This paper investigates a new family of transformation based on Deep Neural Networks trained with supervision for a classification task. Motivations come from the Computer Vision literature, which has demonstrated the robustness of these features against light geometric distortions. Also, adversarial sample literature provides means to implement the inverse transform needed in the third step above mentioned. As far as zero-bit watermarking is concerned, this paper shows that this approach is feasible as it yields a good quality of the watermarked images and an intrinsic robustness. We also tests more advanced tools from Computer Vision such as aggregation schemes with weak geometry and retraining with a dataset augmented with classical image processing attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.