PurposeLimbal epithelial stem cells (LSCs), located in the basal layer of the corneal epithelium in the corneal limbus, are vital for maintaining the corneal epithelium. LSCs have a high capacity of self-renewal with increased potential for error-free proliferation and poor differentiation. To date, limited research has focused on unveiling the composition of the limbal stem cell niche, and, more important, on the role the specific stem cell niche may have in LSC differentiation and function. Our work investigates the composition of the extracellular matrix in the LSC niche and how it regulates LSC differentiation and function.MethodsHyaluronan (HA) is naturally synthesized by hyaluronan synthases (HASs), and vertebrates have the following three types: HAS1, HAS2, and HAS3. Wild-type and HAS and TSG-6 knockout mice—HAS1−/−;HAS3−/−, HAS2Δ/ΔCorEpi, TSG-6−/−—were used to determine the importance of the HA niche in LSC differentiation and specification.ResultsOur data demonstrate that the LSC niche is composed of a HA rich extracellular matrix. HAS1−/−;HAS3−/−, HAS2Δ/ΔCorEpi, and TSG-6−/− mice have delayed wound healing and increased inflammation after injury. Interestingly, upon insult the HAS knock-out mice up-regulate HA throughout the cornea through a compensatory mechanism, and in turn this alters LSC and epithelial cell specification.ConclusionsThe LSC niche is composed of a specialized HA matrix that differs from that present in the rest of the corneal epithelium, and the disruption of this specific HA matrix within the LSC niche leads to compromised corneal epithelial regeneration. Finally, our findings suggest that HA has a major role in maintaining the LSC phenotype.
Mucopolysaccharidosis (MPS) are a family of related disorders caused by a mutation in one of the lysosomal exoglycosidases which leads to the accumulation of glycosaminoglycans (GAGs). MPS VII, caused by a mutation in β-glucuronidase, manifests hepatomegaly, skeletal dysplasia, short stature, corneal clouding and developmental delay. Current treatment regimens for MPS are not effective for treating corneal clouding and impaired mental development. We hypothesized that human umbilical mesenchymal stem cells (UMSC) transplanted into the corneal stroma could participate in the catabolism of GAGs providing a means of cell therapy for MPS. For such treatment, human UMSC were intrastromally transplanted into corneas of MPS VII mice. UMSC transplantation restored the dendritic and hexagonal morphology of host keratocytes and endothelial cells, respectively, and in vivo confocal microscopy (HRTII) revealed reduced corneal haze. Immunohistochemistry using antibodies against HS and CS chains as well as LAMP2 revealed a decrease in GAG content and both lysosomal number and size in the treated corneas. Labeling UMSC intracellular compartments prior to transplantation revealed the distribution of UMSC vesicles throughout the corneal stroma and endothelium. An in vitro co-culture assay between skin fibroblasts isolated from MPSVII mice and UMSC demonstrated that neutral vesicles released by the UMSC are taken up by the fibroblasts and proceed to fuse with the acidic lysosomes. Therefore, transplanted UMSC participate both in extracellular GAG turnover and enable host keratocytes to catabolize accumulated GAG products, suggesting that UMSC could be a novel alternative for treating corneal defects associated with MPS and other congenital metabolic disorders.
Background: Umbilical cord mesenchymal stem cells (UMSCs) have unique immunosuppressive properties. Results: UMSCs express a rich glycocalyx, which confers their ability to modulate both macrophages and T-regulatory cells and to lead to inflammatory cell death. Conclusion: UMSCs actively modulate inflammatory cells by suppressing the immune response and evading rejection. Significance: Engineering cells to express this rich glycocalyx could increase transplantation success.
Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP ؉ and CD44 ؉ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6 ؊/؊ mice present a reduced number of GFAP ؉ astrocytes when compared with the littermate TSG-6 ؉/؊ mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.