Terms and conditions for use: By downloading this article from the EURASIA Journal website you agree that it can be used for the following purposes only: educational, instructional, scholarly research, personal use. You also agree that it cannot be redistributed (including emailing to a list-serve or such large groups), reproduced in any form, or published on a website for free or for a fee.
This study diagnosed the understanding about energy and biologicalcontext energy concepts held by 90 first-year South African university biology students. In particular, students' explanations of energy in a biological context, how energy is involved in different biological situations and whether energy is present and what types of energy are involved in diagrams depicting biological phenomena were investigated. The pencil-and-paper diagnostic test, specifically designed for this study, was used to elicit students' understanding using test items involving biological phenomena. The results showed that many students had problems in understanding energy and energy-related concepts in the following areas: First, the majority of the students provided definitions of energy rather than the explanations they were asked to provide, and the definition could have been rote-learned. Second, although nearly all students knew the energy conservation principle (energy cannot be created or destroyed), many of them were unable to apply this concept to biological contexts. Third, many students erroneously claimed that the energy for metabolism and life processes is made available during photosynthesis in plants, during digestion in animals or that this energy comes directly from the sun. Fourth, about two thirds of the students erroneously indicated that there is no energy involved/present in inanimate objects such as a statue. The implications for the teaching and learning of energy and its related concepts and recommendations for further research are discussed.
This study examined preservice teachers' understanding of biotechnology and its related processes. A sample comprised 88 elementary education preservice teachers at a large university in the Midwest of the USA. A total of 60 and 28 of the participants were enrolled in introductory and advanced science methods courses, respectively. Most participants had taken two integrated science courses at the college level. Data were collected using a questionnaire, which had open-ended items and which required participants to write the definitions and examples of the following terms: biotechnology, genetic engineering, cloning and genetically modified foods. The results indicate that preservice teachers had limited understanding of biotechnology and its related processes. The majority of the preservice teachers provided poor definitions, explanations, and examples of biotechnology, genetic engineering and genetically modified foods. Surprisingly, however, a moderate number of preservice teachers correctly defined cloning and provided correct examples of cloning. Implications for science teacher education, science curriculum, as well as recommendations for further research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.