The European Space Agency's Aeolus satellite was launched in August 2018. Measurements of wind profiles are provided for the first time from space using an onboard Doppler wind lidar. The quality of Aeolus Level‐2B (L2B) wind products has been found suitable for data assimilation in the Météo‐France global model ARPEGE since April 2020, in particular, when applying a suitable bias correction method. This article describes a series of Observing System Experiments (OSEs) conducted in April–May 2020 to assess the impact of Aeolus horizontal line‐of‐sight winds (HLOSW) on Météo‐France's global numerical weather prediction analyses and forecasts. Innovation statistics and a posteriori diagnostics from a period of July–August 2019 were used to scale the random observation errors provided by the L2B processor (mostly for Rayleigh‐clear winds). Although the HLOSW data represent only 0.42% of the total amount of all observations assimilated in ARPEGE, their contribution to the reduction of the global analysis variance is up to 2.3% (measured by the Degree of Freedom for Signal). The assimilation of HLOSW showed improvement in 6 hr short‐range forecasts which is demonstrated by an overall reduction of innovations statistics for various operational observing systems. From a Forecast Sensitivity to Observations impact (FSOi) study Aeolus is found to be the third most effective observing system (per individual observation) at reducing global 24‐hour forecast errors. For longer forecast ranges, the largest positive impacts are noticed over the tropics, particularly in the lower stratosphere up to 102 hr ahead (with up to 2% root‐mean‐square error reduction for wind and temperature), but also in the troposphere up to 72 hr ahead. To a lesser extent, a similar improvement is observed over the Southern Hemisphere. This positive impact of Aeolus HLOSW in OSEs has led to their operational assimilation at Météo‐France starting in June 2020.
Abstract. The retrieval of wind from the first Doppler wind lidar of European Space Agency (ESA) launched in space in August 2018 is based on a series of corrections necessary to provide observations of a quality useful for numerical weather prediction (NWP). In this paper we examine the properties of the Rayleigh–Brillouin correction necessary for the retrieval of horizontal line-of-sight wind (HLOS) from a Fabry–Pérot interferometer. This correction is taking into account the atmospheric stratification, namely temperature and pressure information that are provided by a NWP model as suggested prior to launch. The main goal of the study is to evaluate the impact of errors in simulated atmospheric temperature and pressure information on the HLOS sensitivity by comparing the Integrated Forecast System (IFS) and Action de Recherche Petite Echelle Grande Echelle (ARPEGE) global model temperature and pressure short-term forecasts collocated with the Aeolus orbit. These errors are currently not taken into account in the computation of the HLOS error estimate since its contribution is believed to be small. This study largely confirms this statement to be a valid assumption, although it also shows that model errors could locally (i.e. jet-stream regions, below 700 hPa over both earth poles and in stratosphere) be significant. For future Aeolus follow-on missions this study suggests considering realistic estimations of errors in the HLOS retrieval algorithms, since this will lead to an improved estimation of the Rayleigh–Brillouin sensitivity uncertainty contributing to the HLOS error estimate and better exploitation of space lidar winds in NWP systems.
The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz). Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.