Objectives To evaluate the utility of applying the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) across multiple observational databases within an organization and to apply standardized analytics tools for conducting observational research.Materials and methods Six deidentified patient-level datasets were transformed to the OMOP CDM. We evaluated the extent of information loss that occurred through the standardization process. We developed a standardized analytic tool to replicate the cohort construction process from a published epidemiology protocol and applied the analysis to all 6 databases to assess time-to-execution and comparability of results.Results Transformation to the CDM resulted in minimal information loss across all 6 databases. Patients and observations excluded were due to identified data quality issues in the source system, 96% to 99% of condition records and 90% to 99% of drug records were successfully mapped into the CDM using the standard vocabulary. The full cohort replication and descriptive baseline summary was executed for 2 cohorts in 6 databases in less than 1 hour.Discussion The standardization process improved data quality, increased efficiency, and facilitated cross-database comparisons to support a more systematic approach to observational research. Comparisons across data sources showed consistency in the impact of inclusion criteria, using the protocol and identified differences in patient characteristics and coding practices across databases.Conclusion Standardizing data structure (through a CDM), content (through a standard vocabulary with source code mappings), and analytics can enable an institution to apply a network-based approach to observational research across multiple, disparate observational health databases.
BackgroundKidney Disease Improving Global Outcomes (KDIGO) 2013 updated the classification and risk stratification of chronic kidney disease (CKD) to include both the level of renal function and urinary albumin excretion (UAE). The update subclassifies the previous category of moderate renal impairment. There is currently limited information on the prevalence of CKD based on this new classification in United States (US) adults with type 2 diabetes mellitus (T2DM). The objective of this study was to provide such estimates, for T2DM both overall and in those ≥ 65 years of age. We used the continuous National Health and Nutrition Examination Survey (NHANES) 1999–2012 to identify participants with T2DM. Estimated glomerular filtration rate (eGFR) and UAE were calculated using laboratory results and data collected from the surveys, and categorized based on the KDIGO classification. Projections for the US T2DM population were based on NHANES sampling weights.ResultsA total of 2915 adults diagnosed with T2DM were identified from NHANES, with 1466 being age ≥ 65 years. Prevalence of CKD based on either eGFR or UAE was 43.5% in the T2DM population overall, and 61.0% in those age ≥ 65 years. The prevalence of mildly decreased renal function or worse (eGFR < 60/ml/min/1.73 m2) was 22.0% overall and 43.1% in those age ≥ 65 years. Prevalence of more severe renal impairment (eGFR < 45 ml/min/1.73 m2) was 9.0% overall and 18.6% in those age ≥ 65 years. The prevalence of elevated UAE (> 30 mg/g) was 32.2% overall and 39.1% in those age ≥ 65 years. The most common comorbidities were hypertension, retinopathy, coronary heart disease, myocardial infarction, and congestive heart failure.ConclusionsThis study confirms the high prevalence of CKD in T2DM, impacting 43.5% of this population. Additionally, this study is among the first to report US prevalence estimates of CKD based on the new KDIGO CKD staging system.
BackgroundDepression in people with diabetes can result in increased risk for diabetes-related complications. The prevalence of depression has been estimated to be 17.6 % in people with type 2 diabetes mellitus (T2DM), based on studies published between 1980 and 2005. There is a lack of more recent estimates of depression prevalence among the US general T2DM population.MethodsThe present study used the US National Health and Nutrition Examination Survey (NHANES) 2005–2012 data to provide an updated, population-based estimate for the prevalence of depression in people with T2DM. NHANES is a cross-sectional survey of a nationally representative sample of the civilian, non-institutionalized US population. Starting from 2005, the Patient Health Questionnaire (PHQ-9) was included to measure signs and symptoms of depression. We defined PHQ-9 total scores ≥ 10 as clinically relevant depression (CRD), and ≥ 15 as clinically significant depression (CSD). Self-reported current antidepressant use was also combined to estimate overall burden of depression. Predictors of CRD and CSD were investigated using survey logistic regression models.ResultsA total of 2182 participants with T2DM were identified. The overall prevalence of CRD and CSD among people with T2DM is 10.6 % (95 % confidence interval (CI) 8.9–12.2 %), and 4.2 % (95 % CI 3.4–5.1 %), respectively. The combined burden of depressive symptoms and antidepressants may be as high as 25.4 % (95 % CI 23.0–27.9 %). Significant predictors of CRD include age (younger than 65), sex (women), income (lower than 130 % of poverty level), education (below college), smoking (current or former smoker), body mass index (≥30 kg/m2), sleep problems, hospitalization in the past year, and total cholesterol (≥200 mg/dl). Significant predictors of CSD also include physical activity (below guideline) and cardiovascular diseases.ConclusionsThe prevalence of CRD and CSD among people with T2DM in the US may be lower than in earlier studies, however, the burden of depression remains high. Further research with longitudinal follow-up for depression in people with T2DM is needed to understand real world effectiveness of depression management.Electronic supplementary materialThe online version of this article (doi:10.1186/s12888-016-0800-2) contains supplementary material, which is available to authorized users.
BackgroundA recent Canadian case–control study reported a 4.5-fold increased risk of retinal detachment (RD) during oral fluoroquinolone use. Of the fluoroquinolone-exposed cases, 83 % were exposed to ciprofloxacin. We sought to replicate this finding, and assess whether it applied to all fluoroquinolones.MethodsIn two large US healthcare databases, we performed three case–control analyses: one replicating the recent study; one addressing additional potential confounders; and one that increased sample size by dropping the Canadian study’s requirement for a prior ophthalmologist visit. We also performed a self-controlled case-series (SCCS) analysis in which each subject served as his or her own comparator.ResultsIn the replication case–control analyses, the adjusted odds ratios (ORs) for any exposure to fluoroquinolones or ciprofloxacin were approximately 1.2 in both databases, and were statistically significant, and the ORs for current exposure were modestly above 1 in one database, modestly below 1 in the other, and not statistically significant. In the other case–control analyses, the ORs were close to 1. In a post hoc age-stratified case–control analysis, we observed an association of RD with fluoroquinolone exposure among older subjects in one of the two databases. All estimates from the SCCS analyses were below 1.2 and none was statistically significant.ConclusionThe present study does not confirm the recent Canadian study’s finding of a strong relationship between RD and current exposure to fluoroquinolones. Instead, it found a modest association between RD and current or any exposure to fluoroquinolones in the case–control analyses, and no association in the SCCS analyses.
Background and purpose This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. Materials and methods All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using “quanteda” NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Results Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377–681] vs. 309 [164–396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Conclusions Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.