Abstract-Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated ASIC for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35µm CMOS technology and utilizes a bit-stream crosscorrelator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.
Here we describe a completely integrated and customizable microfluidic control and sensing architecture that can be readily implemented for laboratory or portable chemical or biological control and sensing applications. The compact platform enables control of 32 solenoid valves, a multitude of pumps and motors, a thermo-electric controller, a pressure controller, and a high voltage power supply. It also features two temperature probe interfaces, one relative humidity and ambient temperature sensor, two pressure sensors, and interfaces to an electrical conductivity sensor, flow sensor, and a bubble detector. The platform can be controlled via an onboard microcontroller and requires no proprietary software.
An open-source, low noise, low cost, and tunable transimpedance amplifier is presented. The compact circuit board requires few parts and costs less than $65 USD. The transimpedance amplifier is intended for low-light detection and operation with commercial photomultiplier tubes (PMTs). It provides a much more cost-effective acquisition tool compared to competitive products on the market. The system can easily be assembled and modified to suit specific current sensing applications. The amplifier features two variable gains and an adjustable DC offset to optimize dynamic range and suppress potential bias in the signal. With a target bandwidth of DC to 2 Hz and fourth-order Sallen-Key cutoff, the design is ideally suited for various applications in the field of analytical chemistry and biology, such as laser-induced fluorescence detection or chemiluminescence measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.