Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning based due to the outstanding performance. In this survey, we mainly focus on the deep learning based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets 1 . * Equal contribution ‡ Corresponding author 1 The frameworks, topics, and datasets discussed are originated from the extensive literature review of state-of-the-art research. We have tried our best to cover all but may still omit some works. Readers are welcome to provide suggestions regarding the omissions and mistakes in this article. We also intend to update this article with time as and when new approaches or definitions are proposed and used by the community Preprint. Under review.
Human conversations are guided by short-term and long-term goals. We study how to plan short-term goal sequences as coherently as humans do and naturally direct them to an assigned long-term goal in open-domain conversations. Goal sequences are a series of knowledge graph (KG) entity-relation connections generated by KG walkers that traverse through the KG. The existing recurrent and graph attention based KG walkers either insufficiently utilize the conversation states or lack global guidance. In our work, a hierarchical model learns goal planning in a hierarchical learning framework. We present HiTKG, a hierarchical transformer-based graph walker that leverages multiscale inputs to make precise and flexible predictions on KG paths. Furthermore, we propose a two-hierarchy learning framework that employs two stages to learn both turn-level (short-term) and global-level (long-term) conversation goals. Specifically, at the first stage, HiTKG is trained in a supervised fashion to learn how to plan turn-level goal sequences; at the second stage, HiTKG tries to naturally approach the assigned global goal via reinforcement learning. In addition, we propose MetaPath as the backbone method for KG path representation to exploit the entity and relation information concurrently. We further propose Multi-source Decoding Inputs and Output-level Length Head to improve the decoding controllability. Our experiments show that HiTKG achieves a significant improvement in the performance of turn-level goal learning compared with state-of-the-art baselines. Additionally, both automatic and human evaluation prove the effectiveness of the two-hierarchy learning framework for both short-term and long-term goal planning.
In the past few years, the use of transformer-based models has experienced increasing popularity as new state-of-the-art performance was achieved in several natural language processing tasks. As these models are often extremely large, however, their use for applications within embedded devices may not be feasible. In this work, we look at one such specific application, retrieval-based dialogue systems, that poses additional difficulties when deployed in environments characterized by limited resources. Research on building dialogue systems able to engage in natural sounding conversation with humans has attracted increasing attention in recent years. This has led to the rise of commercial conversational agents, such as Google Home, Alexa and Siri situated on embedded devices, that enable users to interface with a wide range of underlying functionalities in a natural and seamless manner. In part due to memory and computational power constraints, these agents necessitate frequent communication with a server in order to process the users' queries. This communication may act as a bottleneck, resulting in delays as well as in the halt of the system should the network connection be lost or unavailable. We propose a new framework for hardware-aware retrieval-based dialogue systems based on the Dual-Encoder architecture, coupled with a clustering method to group candidates pertaining to a same conversation, that reduces storage capacity and computational power requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.