Abstract. Language workbenches are tools that provide high-level mechanisms for the implementation of (domain-specific) languages. Language workbenches are an active area of research that also receives many contributions from industry. To compare and discuss existing language workbenches, the annual Language Workbench Challenge was launched in 2011. Each year, participants are challenged to realize a given domain-specific language with their workbenches as a basis for discussion and comparison. In this paper, we describe the state of the art of language workbenches as observed in the previous editions of the Language Workbench Challenge. In particular, we capture the design space of language workbenches in a feature model and show where in this design space the participants of the 2013 Language Workbench Challenge reside. We compare these workbenches based on a DSL for questionnaires that was realized in all workbenches.
Language workbenches are environments for simplifying the creation and use of computer languages. The annual Language Workbench Challenge (LWC) was launched in 2011 to allow the many academic and industrial researchers in this area an opportunity to quantitatively and qualitatively compare their approaches. We first describe all four LWCs to date, before focussing on the approaches used, and results generated, during the third LWC. We give various empirical data for ten approaches from the third LWC. We present a generic feature model within which the approaches can be understood and contrasted. Finally, based on our experiences of the existing LWCs, we propose a number of benchmark problems for future LWCs.
The realization of a language design requires multiple artifacts that redundantly encode the same information. This entails significant effort for language implementors, and often results in late detection of errors in language definitions. In this paper we present a proof-of-concept language designer's workbench that supports generation of IDEs, interpreters, and verification infrastructure from a single source. This constitutes a first milestone on the way to a system that fully automates language implementation and verification.
Abstract. IDEs depend on incremental name and type analysis for responsive feedback for large projects. In this paper, we present a languageindependent approach for incremental name and type analysis. Analysis consists of two phases. The first phase analyzes lexical scopes and binding instances and creates deferred analysis tasks. A task captures a single name resolution or type analysis step. Tasks might depend on other tasks and are evaluated in the second phase. Incrementality is supported on file and task level. When a file changes, only this file is recollected and only those tasks are reevaluated, which are affected by the changes in the collected data. The analysis does neither re-parse nor re-traverse unchanged files, even if they are affected by changes in other files. We implemented the approach as part of the Spoofax Language Workbench and evaluated it for the WebDSL web programming language.
A key problem in metaprogramming and specifically in generative programming is to guarantee that generated code is well-formed with respect to the context-free and context-sensitive constraints of the target language. We propose typesmart constructors as a dynamic approach to enforcing the well-formedness of generated code. A typesmart constructor is a function that is used in place of a regular constructor to create values, but it may reject the creation of values if the given data violates some language-specific constraint. While typesmart constructors can be implemented individually, we demonstrate how to derive them automatically from a grammar, so that the grammar remains the sole specification of a language's syntax and is not duplicated. We have integrated support for typesmart constructors into the run-time system of Stratego to enforce usage of typesmart constructors implicitly whenever a regular constructor is called. We evaluate the applicability, performance, and usefulness of typesmart constructors for syntactic constraints in a compiler for MiniJava developed with Spoofax and in various language extensions of Java and Haskell implemented with SugarJ and SugarHaskell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.