BRAF and NRAS are common targets for somatic mutations in benign and malignant neoplasms that arise from melanocytes situated in epithelial structures and lead to constitutive activation of the MAP-kinase pathway1, 2. However, BRAF and NRAS mutations are absent in a number of other melanocytic neoplasms in which the equivalent oncogenic events are currently unknown3. We report frequent somatic mutations in the heterotrimeric G protein alpha subunit, GNAQ, in blue nevi (83%) and ocular melanoma of the uvea (46%). The mutations occur exclusively in codon 209 in the ras-like domain and result in constitutive activation, turning GNAQ into a dominant acting oncogene. Our results demonstrate an alternative route to MAP-kinase activation in melanocytic neoplasia providing new opportunities for therapeutic intervention.
Dysfunction of the endoplasmic reticulum (ER) has been reported in a variety of human pathologies, including cancer. However, the contribution of the ER to the early stages of normal cell transformation is largely unknown. Using primary human melanocytes and biopsies of human naevi (moles), we show that the extent of ER stress induced by cellular oncogenes may define the mechanism of activation of premature senescence. Specifically, we found that oncogenic forms of HRAS (HRAS(G12V)) but not its downstream target BRAF (BRAF(V600E)), engaged a rapid cell-cycle arrest that was associated with massive vacuolization and expansion of the ER. However, neither p53, p16(INK4a) nor classical senescence markers--such as foci of heterochromatin or DNA damage--were able to account for the specific response of melanocytes to HRAS(G12V). Instead, HRAS(G12V)-driven senescence was mediated by the ER-associated unfolded protein response (UPR). The impact of HRAS on the UPR was selective, as it was poorly induced by activated NRAS (more frequently mutated in melanoma than HRAS). These results argue against premature senescence as a converging mechanism of response to activating oncogenes and support a direct role of the ER as a gatekeeper of tumour control.
UV irradiation induces histone variant H2AX phosphorylated on serine 139 (γH2AX) foci and high levels of pan-nuclear γH2AX staining without foci, but the significance of this finding is still uncertain. We examined the formation of γH2AX and 53BP1 that coincide at sites of double-strand breaks (DSBs) after ionizing radiation. We compared UV irradiation and treatment with etoposide, an agent that causes DSBs during DNA replication. We found that during DNA replication, UV irradiation induced at least three classes of γH2AX response: a minority of γH2AX foci colocalizing with 53BP1 foci that represent DSBs at replication sites, a majority of γH2AX foci that did not colocalize with 53BP1 foci, and cells with high levels of pan-nuclear γH2AX without foci of either γH2AX or 53BP1. Ataxia-telangiectasia mutated kinase and JNK mediated the UV-induced pan-nuclear γH2Ax, which preceded and paralleled UV-induced S phase apoptosis. These high levels of pan-nuclear γH2AX were further increased by loss of the bypass polymerase Pol η and inhibition of ataxia-telangiectasia and Rad3-related, but the levels required the presence of the damagebinding proteins of excision repair xeroderma pigmentosum complementation group A and C proteins. DSBs, therefore, represent a small variable fraction of UV-induced γH2AX foci dependent on repair capacity, and they are not detected within high levels of pan-nuclear γH2AX, a preapoptotic signal associated with ATM-and JNK-dependent apoptosis during replication. The formation of γH2AX foci after treatment with DNA-damaging agents cannot, therefore, be used as a direct measure of DSBs without independent corroborating evidence.T o maintain the integrity of genomic information under threat of DNA damage, cells employ a range of responses including DNA repair, replication bypass, recombination, cell-cycle checkpoints, and senescence or apoptosis (1, 2). These responses are described by the all-embracing concept of the DNA damage response (DDR) (1). DNA double-strand breaks (DSBs) are important but not the only starting lesion for the DDR.In eukaryotic cells, the DDR is rapidly initiated by the PI3K kinases ataxia-telangiectasia and Rad3-related (ATR) and ataxiatelangiectasia mutated kinase (ATM) (3, 4). ATR is recruited to single-stranded DNA regions at stalled replication forks in response to replication stress (5-8); ATM is activated primarily in response to DSBs (3, 9-11). ATR and ATM phosphorylate serine threonine protein kinase and CHK2, respectively, which activate cell-cycle checkpoints and p53, leading to a p53-dependent apoptotic pathway (12). This kinase cascade phosphorylates serine 139 and tyrosine 142 of the histone variant H2AX. After ionizing radiation accumulates in foci, phosphorylated H2AX (γH2AX) serine threonine protein kinase colocalizes with other markers of DSBs (53BP1, pNBS1, MDC1, and Brca1) in immunofluorescent microscopy (IF) (13-16). γH2AX foci are frequently adopted as quantitative markers for DSBs in IF (17, 18). However, the exact correspondence between γH2AX and D...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.