We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 10(5) and field-effect mobilities up to 4 cm(2) V(-1) s(-1). The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al(2)O(3) film was investigated. A 32 nm thick Al(2)O(3) layer was found to be able to eliminate the hysteresis.
Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll‐to‐roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio‐frequency identification devices with a reading range of up to 4 meters. Most notably our approach leads to fatigue resistant devices showing less than 1% deterioration of electrical properties after 1000 bending cycles. The bending fatigue resistance demonstrated on a variety of technologically relevant plastic and paper substrates renders the material highly suitable for various printable wearable devices, where repeatable dynamic bending stress is expected during usage. All applied printing and post‐processing methods are compatible with roll‐to‐roll manufacturing and temperature sensitive flexible substrates providing a platform for the scalable manufacturing of mechanically stable and environmentally friendly graphene printed electronics.
This paper describes the design principles of electrostatically actuated microelectromechanical capacitors. Key properties, such as capacitance tuning range, quality factor (Q), different control methods, thermal stability, effect of radio frequency signal on capacitance and gas damping are examined. Experimental devices were designed and fabricated using the design principles. The two-gap capacitor has a measured nominal capacitance of 1.58 pF and achieves a tuning range of 2.25:1 with parasitics. When all parasitic capacitances to the substrate are extracted the measured nominal capacitance is 1.15 pF and the tuning range is 2.71:1. The device is made of electroplated gold and has a Q of 66 at 1 GHz, and 53 at 2 GHz. In addition, two- and three-state capacitors were designed, fabricated and characterized.
Carbon nanotubes form bundles due to the van der Waals interaction. The properties of networks made from such bundles are dependent on the bundle properties (average number of parallel tubes inside a bundle D and the bundle length compared to the nanotube length lCNT ), and not only on the usual parameters that define carbon nanotube networks, such as density and length of single nanotubes. Here we propose a model for random networks from carbon nanotube bundles and compare their properties with those of ordinary carbon nanotube networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.