The increase in RMS of surface EMG during the early gains in strength should not be directly related to the changes in the neural drive. The relatively small but long-lasting elevated free resting calcium after high-resistance strength training could result in force potentiation and EMG increase.
The increase in muscle strength without noticeable hypertrophic adaptations is very important in some sports. Motor unit (MU) synchronisation and higher rate of MU activation are proposed as possible mechanisms for such a strength and electromyogram (EMG) increase in the early phase of a training regimen. Root mean square and/or integrated EMG are amplitude measures commonly used to estimate the adaptive changes in efferent neural drive. EMG amplitude characteristics could change also because of alteration in intracellular action potential (IAP) spatial profile. We simulated MUs synchronization under different length of the IAP profile. Different synchronization was simulated by variation of the percent of discharges in a referent MU, to which a variable percent of remaining MUs was synchronized. Population synchrony index estimated the degree of MU synchronization in EMG signals. We demonstrate that the increase in amplitude characteristics due to MU synchronization is stronger in surface than in intramuscularly detected EMG signals. However, the effect of IAP profile lengthening on surface detected EMG signals could be much stronger than that of MU synchronization. Thus, changes in amplitude characteristics of surface detected EMG signals with progressive strength training could hardly be used as an indicator of changes in neural drive without testing possible changes in IAPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.