The problem of detecting moving and stationary people in a room with a specialized radar system sensing through the wall is considered in the paper. The high-range resolution of the system is achieved by effective processing of reflected ultra-wideband stepped-frequency continuous-wave signals (SFCW). The paper presents a new method which is based on normalization of complex-valued samples of the received SFCW signals and extends traditional processing steps including quadrature-phase demodulation, sampling and inverse discrete Fourier transform. The proposed method is aimed at improving the performance of the interperiodic difference and variance of sample algorithms which are briefly described in relation to the SFCW radar system. The computer modeling showed that the introduced normalization mitigates the background noise and merely decreases the artifacts commonly appearing in radar images due to the non-uniform amplitude-frequency characteristics of the radar circuits. The described algorithms were implemented in a software part of the real-time working prototype of the radar system designed and assembled at the University research center. The results of field experiments confirmed the advantage of the proposed method in typical scenarios and showed the increase of the signal-to-noise ratio to 5 dB compared to traditional radar algorithm-processing SFCW signals.
Журнал зарегистрирован в Управлении Федеральной службы по надзору в сфере связи, информационных технологий и массовых коммуникаций ПИ № ФС77-41672 от 13 августа 2010г. Журнал размещен в открытом бесплатном доступе на сайте www.ntvp.ru, и в Научной электронной библиотеке (участвует в программе по формированию РИНЦ). Журнал включен ВАК РФ в перечень научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук. Подписной индекс в объединенном каталоге «Пресса России» № 12025.
The article describes a method of joint high-precision estimation of range and velocity in ultra-wideband short-range radar systems. The peculiarity of the method is the two dimensional range-velocity compression function based on ambiguity function of ultra-wideband discrete frequency coded waveforms. Expressions of ambiguity function and compression function such as a block diagram of the radar transceiver for the proposed method are presented. Experimental data confirm the efficiency of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.