The notion of a cellular complex which is well known in the topology is applied to describe the structure of images. It is shown that the topology of cellular complexes is the only possible topology of finite sets. Under this topology no contradictions or paradoxes arise when defining connected subsets and their boundaries. Ways of encoding images as cellular complexes are discussed. The process of image segmentation is considered as splitting (in the topological sense) a cellular complex into blocks of cells. The notion of a cell list is introduced as a precise and compact data structure for encoding segmented images. Some applications of this data structure to image analysis are demonstrated.
The paper presents a new set of axioms of digital topology, which are easily understandable for application developers. They define a class of locally finite (LF) topological spaces. An important property of LF spaces satisfying the axioms is that the neighborhood relation is antisymmetric and transitive. Therefore any connected and non-trivial LF space is isomorphic to an abstract cell complex. The paper demonstrates that in an n-dimensional digital space only those of the (a, b)-adjacencies commonly used in computer imagery have analogs among the LF spaces, in which a and b are different and one of the adjacencies is the "maximal" one, corresponding to 3 n 1 neighbors. Even these (a, b)-adjacencies have important limitations and drawbacks. The most important one is that they are applicable only to binary images. The way of easily using LF spaces in computer imagery on standard orthogonal grids containing only pixels or voxels and no cells of lower dimensions is suggested.
The notion of a cellular complex which is well known in the topology is applied to describe the structure of images. It is shown that the topology of cellular complexes is the only possible topology of finite sets. Under this topology no contradictions or paradoxes arise when defining connected subsets and their boundaries. Ways of encoding images as cellular complexes are discussed. The process of image segmentation is considered as splitting (in the topological sense) a cellular complex into blocks of cells. The notion of a cell list is introduced as a precise and compact data structure for encoding segmented images. Some applications of this data structure to image analysis are demonstrated.
The paper presents an analysis of sources of errors when estimating derivatives of numerical or noisy functions. A method of minimizing the errors is suggested. When being applied to the estimation of the curvature of digital curves, the analysis shows that under the conditions typical for digital image processing the curvature can rarely be estimated with a precision higher than 50%. Ways of overcoming the difficulties are discussed and a new method for estimating the curvature is suggested and investigated as to its precision. The method is based on specifying boundaries of regions in gray value images with subpixel precision. The method has an essentially higher precision than the known methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.