In the present work, the methods of dynamic light scattering and fluorescence spectroscopy were applied to study the optical properties of aqueous dilutions of the humic substances complex (HC) as a potential drug delivery system. The supramolecular structures in the humate solution were characterized as monodisperse systems of the submicron range with a tendency to decrease in particle size with a decrease in the dry matter concentration. The slightly alkaline medium (8.3) of the studied aqueous dilutions of HC causes the absence of a pronounced fluorescence maximum in the region from 400 to 500 nm. However, the presence of an analytically significant, inversely proportional to the concentration second-order scattering (SOS) signal at 2λex = λem was shown. In the examples of the antiviral substances mangiferin and favipiravir, it was shown that the use of the humic complex as a drug carrier makes it possible to increase the solubility by several times and simultaneously obtain a system with a smaller particle size of the dispersed phase. It has been shown that HC can interact with mangiferin and favipiravir to form stable structures, which lead to a significant decrease in SOS intensities on HC SOS spectra. The scattering wavelengths, λex/λem, were registered at 350 nm/750 nm for mangiferin and 365 nm/730 nm for favipiravir, respectively. The increments of the scattering intensities (I0/I) turned out to be proportional to the concentration of antiviral components in a certain range of concentrations.
The previously demonstrated activity of aqueous solutions of methionine and zinc salts against biofilms of uropathogenic bacteria prompted us to investigate the structure and properties of zinc methionine complex obtained from such solutions. The paper presents the analysis results of zinc coordination complexes with methionine obtained by synthesis (0.034 mol of L-methionine, 0.034 mol of NaOH, 40 mL of H2O, 0.017 mol ZnSO4, 60 °C) and simple crystallization from water solution (25 mL of a solution containing 134 mmol/L L-methionine, 67 mmol/L ZnSO4, pH = 5.74, I = 0.37 mmol/L, crystallization at room temperature during more than two weeks). IR spectral analysis and X-ray diffraction showed the structural similarity of the substances to each other, in agreement with the data described in the literature. DSC confirmed the formation of a thermally stable (in the range from −30 °C to 180 °C) chelate compound in both cases and indicated the possible retention of the polymorphic two-dimensional structure inherent in L-methionine with the temperature of phase transition 320 K. The crystallized complex had better solubility in water (100 to 1000 mL per 1.0 g) contra the synthesized analog, which was practically insoluble (more than 10 000 mL per 1.0 g). The results of the solubility assessment, supplemented by the results of the dispersion analysis of solutions by the dynamic light scattering method indicated the formation of zinc-containing nanoparticles (80 nm) in a saturated water solution of a crystallized substance, suggesting the crystallized substance may have higher bioavailability. We predicted a possibility of the equivalent existence of optically active cis and trans isomers in methionine-zinc solutions by the close values of formation enthalpy (−655 kJ/mol and −657 kJ/mol for cis and trans forms, respectively) and also illustrated by the polarimetry measurement results (∆α = 0.4°, pH = 5.74, C(Met) = 134 mmol/L; the concentration of metal ion gradually increased from 0 to 134 mmol/L). The obtained results allowed us to conclude that the compound isolated from the solution is a zinc-methionine chelate with the presence of sulfate groups and underline the role of the synthesis route for the biopharmaceutical characteristics of the resulting substance. We provided some quality indicators that it may be possible to include in the pharmacopeia monographs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.