We numerically study a one-dimensional system of N classical localized planar rotators coupled through interactions which decay with distance as 1/r α (α ≥ 0). The approach is a first principle one (i.e., based on Newton's law), and yields the probability distribution of momenta. For α large enough and N ≫ 1 we observe, for longstanding states, the Maxwellian distribution, landmark of Boltzmann-Gibbs thermostatistics. But, for α small or comparable to unity, we observe instead robust fat-tailed distributions that are quite well fitted with q-Gaussians. These distributions extremize, under appropriate simple constraints, the nonadditive entropy S q upon which nonextensive statistical mechanics is based. The whole scenario appears to be consistent with nonergodicity and with the thesis of the q-generalized Central Limit Theorem.
We study the response properties of d-dimensional hypercubic excitable networks to a stochastic stimulus. Each site, modeled either by a three-state stochastic susceptible-infected-recovered-susceptible system or by the probabilistic Greenberg-Hastings cellular automaton, is continuously and independently stimulated by an external Poisson rate h. The response function (mean density of active sites rho versus h) is obtained via simulations (for d=1,2,3,4) and mean-field approximations at the single-site and pair levels (for all d). In any dimension, the dynamic range and sensitivity of the response function are maximized precisely at the nonequilibrium phase transition to self-sustained activity, in agreement with a reasoning recently proposed. Moreover, the maximum dynamic range attained at a given dimension d is a decreasing function of d.
We study a modified version of the stochastic susceptible-infected-refractory-susceptible (SIRS) model by employing a nonlinear (exponential) reinforcement in the contagion rate and no diffusion. We run simulations for complete and random graphs as well as d-dimensional hypercubic lattices (for d=3,2,1). For weak nonlinearity, a continuous nonequilibrium phase transition between an absorbing and an active phase is obtained, such as in the usual stochastic SIRS model [Joo and Lebowitz, Phys. Rev. E 70, 036114 (2004)]. However, for strong nonlinearity, the nonequilibrium transition between the two phases can be discontinuous for d>or=2, which is confirmed by well-characterized hysteresis cycles and bistability. Analytical mean-field results correctly predict the overall structure of the phase diagram. Furthermore, contrary to what was observed in a model of phase-coupled stochastic oscillators with a similar nonlinearity in the coupling [Wood, Phys. Rev. Lett. 96, 145701 (2006)], we did not find a transition to a stable (partially) synchronized state in our nonlinearly pulse-coupled excitable elements. For long enough refractory times and high enough nonlinearity, however, the system can exhibit collective excitability and unstable stochastic oscillations.
A lattice model of three-state stochastic phase-coupled oscillators has been shown by Wood et al. (2006 Phys. Rev. Lett. 96 145701) to exhibit a phase transition at a critical value of the coupling parameter, leading to stable global oscillations. We show that, in the complete graph version of the model, upon further increase in the coupling, the average frequency of collective oscillations decreases until an infiniteperiod (IP) phase transition occurs, at which point collective oscillations cease. Above this second critical point, a macroscopic fraction of the oscillators spend most of the time in one of the three states, yielding a prototypical nonequilibrium example (without an equilibrium counterpart) in which discrete rotational (C 3 ) symmetry is spontaneously broken, in the absence of any absorbing state. Simulation results and nucleation arguments strongly suggest that the IP phase transition does not occur on finite-dimensional lattices with short-range interactions.
Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [Phys. Rev. Lett. 96}, 145701 (2006)], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter $0\leq \alpha \leq 1$, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for $\alpha \leq \alpha^\prime < 1$. At $\alpha=1$ the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.Comment: 17 pages, 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.