In this paper we present the first stage of a new approach to improve the precision and recall of the content-based image retrieval task. To do this, we aim to combine three colour features, RGB and HSV histograms, and MPEG-7 Colour Layout Descriptor. To perform the combination, we propose to use an approximation based on Borda Voting-Schemes. Under that the Borda Voting-Schemes needs at least three votes to perform the combination, we intend to use the K-Nearest Neighbors methods to select the candidate images, given a query image. In the second stage, we'll implement our approach using at least three image databases.Keywords: HSV histogram, RGB histogram, Colour layout fescriptor, Borda Voting Schemes, KNN. ResumenEn este artículo se presenta la primera fase de experimentación de una nueva propuesta para mejorar la precisión y cobertura de la recuperación de imágenes basada en contenidos. Para realizar esta tarea, se propone combinar tres características de color, como son los histogramas RGB y HSV y el Descriptor de Distribución de Color del estándar MPEG-7. A fin de llevar a cabo la combinación, se plantea emplear una aproximación basada en Esquemas de Votación Borda. En virtud de que dichos esquemas requieren al menos tres votos, se propone usar la técnica de los K -Vecinos más cercanos, con el objetivo de seleccionar las imágenes candidatas a partir de imagen de consulta. En la segunda etapa se implementará nuestra propuesta empleando al menos tres bases de datos de imágenes.
A lo largo de los años hemos visto como los lenguajes de programación han ido evolucionando de una manera vertiginosa. Si a inicios de la programación veíamos como las aplicaciones se desarrollaban con códigos binarios, hoy podemos abstraer la realidad de nuestro entorno con ayuda de herramientas muy completas como la programa.
This chapter presents a new proposal for supporting the management of research processes in universities and higher education centers. To this aim, the authors have developed a comprehensive ecosystem that implements a knowledge model that addresses three innovative aspects of research: (i) acceleration of knowledge production, (ii) research valorization and (iii) discovery of improbable peers. The ecosystem relies on ontologies and intelligent modules and is able to automatically retrieve information of major scientific databases such as SCOPUS and Science Direct to infer new information. Currently, the system is able to provide guidelines to create improbable research peers as well as automatically generate resilience graphics and reports from more than 17,000 tuples of the ontological database. In this work, the authors describe in detail an important aspect of support systems for research management in higher education: the development and valorization of competences of students collaborating in research process and startUPS of universities. Furthermore, a knowledge model of entrepreneurship (startUPS) as well as an analyzer of general and specific competences based on data mining processes is presented.
ResumenEn este trabajo se aplican modelos de máxi-ma entropía, a fin de etiquetar los roles semánticos que posee el corpus CoNLL 09. Se realizan dos aproximaciones: una primera basada en literales tácitos y una segunda que usa pesos para caracterizar los constituyentes de los predicados. Luego de analizar los resultados se sugieren mejoras en el proceso de entrenamiento, que permitirán obtener valores más bajos de error e incrementar el rendimiento general del sistema.Palabras clave: Etiquetado de Roles Semánti-cos, modelos de máxima entropía, CoNLL 2009. AbstractIn this work we applied the maximum entropy models to label semantic roles of the sentences in the CoNLL 09 corpus. We propose two approximations: the first one uses single literals and the second approximation introduces weights to obtain a better classifier of constituents in the sentences. After make several experiments we suggest improvements in the whole process to obtain a lower error rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.