The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, which impairs read alignment and downstream analysis accuracy. Reference genome structures incorporating known genetic variation have been shown to improve the accuracy of genomic analyses, but have so far remained computationally prohibitive for routine large-scale use. Here we present a graph genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million indels. Our Graph Genome Pipeline requires 6.5 hours to process a 30x coverage WGS sample on a system with 36 CPU cores compared with 11 hours required by the GATK Best Practices pipeline.Using complementary benchmarking experiments based on real and simulated data, we show that using a graph genome reference improves read mapping sensitivity and produces a 0.5% increase in variant calling recall, or about 20,000 additional variants being detected per sample, while variant calling specificity is unaffected. Structural variations (SVs) incorporated into a graph genome can be genotyped accurately under a unified framework. Finally, we show that iterative augmentation of graph genomes yields incremental gains in variant calling accuracy. Our implementation is a significant advance towards fulfilling the promise of graph genomes to radically enhance the scalability and accuracy of genomic analyses.
The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, which impairs read alignment and downstream analysis accuracy. Reference genome structures incorporating known genetic variation have been shown to improve the accuracy of genomic analyses, but have so far remained computationally prohibitive for routine large-scale use. Here we present a graph genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million indels. Our Graph Genome Pipeline requires 6.5 hours to process a 30x coverage WGS sample on a system with 36 CPU cores compared with 11 hours required by the GATK Best Practices pipeline.
SummaryThe precisionFDA Truth Challenge V2 aimed to assess the state-of-the-art of variant calling in difficult-to-map regions and the Major Histocompatibility Complex (MHC). Starting with FASTQ files, 20 challenge participants applied their variant calling pipelines and submitted 64 variant callsets for one or more sequencing technologies (~35X Illumina, ~35X PacBio HiFi, and ~50X Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with the new GIAB benchmark sets and genome stratifications. Challenge submissions included a number of innovative methods for all three technologies, with graph-based and machine-learning methods scoring best for short-read and long-read datasets, respectively. New methods out-performed the 2016 Truth Challenge winners, and new machine-learning approaches combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.
Graph-based genome reference representations have seen significant development, motivated by the inadequacy of the current human genome reference to represent the diverse genetic information from different human populations and its inability to maintain the same level of accuracy for non-European ancestries. While there have been many efforts to develop computationally efficient graph-based toolkits for NGS read alignment and variant calling, methods to curate genomic variants and subsequently construct genome graphs remain an understudied problem that inevitably determines the effectiveness of the overall bioinformatics pipeline. In this study, we discuss obstacles encountered during graph construction and propose methods for sample selection based on population diversity, graph augmentation with structural variants and resolution of graph reference ambiguity caused by information overload. Moreover, we present the case for iteratively augmenting tailored genome graphs for targeted populations and demonstrate this approach on the whole-genome samples of African ancestry. Our results show that population-specific graphs, as more representative alternatives to linear or generic graph references, can achieve significantly lower read mapping errors and enhanced variant calling sensitivity, in addition to providing the improvements of joint variant calling without the need of computationally intensive post-processing steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.