Abstract. When a topological group G acts on a compact space X, its enveloping semigroup E(X) is the closure of the set of g-translations, g ∈ G, in the compact space X X . Assume that X is metrizable. It has recently been shown by the first two authors that the following conditions are equivalent: (1) X is hereditarily almost equicontinuous; (2) X is hereditarily non-sensitive; (3) for any compatible metric d on X the metric d G (x, y) := sup{d(gx, gy) : g ∈ G} defines a separable topology on X; (4) the dynamical system (G, X) admits a proper representation on an Asplund Banach space. We prove that these conditions are also equivalent to the following: the enveloping semigroup E(X) is metrizable.
A topological group is minimal if it does not admit a strictly coarser
Hausdorff group topology. The Roelcke uniformity (or lower uniformity) on a
topological group is the greatest lower bound of the left and right
uniformities. A group is Roelcke-precompact if it is precompact with respect to
the Roelcke uniformity. Many naturally arising non-Abelian topological groups
are Roelcke-precompact and hence have a natural compactification. We use such
compactifications to prove that some groups of isometries are minimal. In
particular, if U_1 is the Urysohn universal metric space of diameter 1, the
group Iso(U_1) of all self-isometries of U_1 is Roelcke-precompact,
topologically simple and minimal. We also show that every topological group is
a subgroup of a minimal topologically simple Roelcke-precompact group of the
form Iso(M), where M is an appropriate non-separable version of the Urysohn
space.Comment: To appear in Topology and its Applications. 39 page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.