A Demonstration (DEMO) thermonuclear reactor is the next step after the International Thermonuclear Experimental Reactor (ITER). Designs for a DEMO divertor and the First Wall require the joining of tungsten to steel; this is a difficult task, however, because of the metals’ physical properties and necessary operating conditions. Brazing is a prospective technology that could be used to solve this problem. This work examines a state-of-the-art solution to the problem of joining tungsten to steel by brazing, in order to summarize best practices, identify shortcomings, and clarify mechanical property requirements. Here, we outline the ways in which brazing technology can be developed to join tungsten to steel for use in a DEMO application.
To create a DEMO reactor, it is necessary to develop high-quality technology to join tungsten with reduced-activation ferritic-martensitic (RAFM) steel (Rusfer, Eurofer, CLF-1, etc.). Difficulties arise in their direct connection due to the large difference in the coefficient of thermal expansion (CTE). To suppress the difference of CTE, intermediate interlayers are usually used, such as vanadium or tantalum, and brazing is a prospective technology to conduct the joining. The vast majority of works represent copper- or nickel-based brazing alloys, but their applicability is under significant discussion due to their activation properties. That is why, in this work, fully reduced activation 48Ti-48Zr-4Be wt.% brazing alloy was used. The following joint was made: Rusfer steel/48Ti-48Zr-4Be/Ta/48Ti-48Zr-4Be/W. The brazing was successfully carried out under a mode providing thermal heat treatment of Rusfer. Through EDS and EBSD analysis, the microstructure of the joint was determined. Shear strength of the as-joined composition was measured as 127 ± 20 MPa. The joint endured 200 thermocycles in the temperature range between 300–600 °C, but the fillet regions degraded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.