The article deals with the issues of modeling and management of life support systems of a residential building. The resulting model of the liquid level in the tank allows you to establish the relationship between the level and the flow rate of the liquid. The results of the selection and justification of the fluid level control structure are presented. An algorithm that implements the operation of a virtual object is given. The structure of the automatic control system (ACS) of the liquid level is technically implemented in an open type. The results confirming the achievability of the proposed structural changes are obtained. The results of experimental studies are presented. The choice and justification of the method of controlling the heating system and the liquid level in the tank are considered. Programs for managing subsystems of a residential building in Assembly language, C++, and ladder diagrams are presented. A model for controlling the liquid level in a Multisim environment is proposed.
Modern mathematical models for automatic analysis of electrical characteristics of integrated circuits are considered. The requirements for the analysis programs are formulated. A comparative analysis of machine methods for calculating integrated circuits is carried out in terms of their accuracy, RAM volumes and calculation time. The features of the development of modern automation tools for designing integrated circuits are considered. One of the main tasks of designing an integrated circuit is a schematic analysis, which must be carried out both at the preliminary stage and after the development of the integrated circuit topology. However, it is possible to identify the main re-quirements that a modern analysis program must meet: reliability - stable calculation of a wide class of electronic circuits, obtaining solutions even for poorly conditioned tasks; high performance - this requirement is especially important when calculating BIS, in tasks of multivariate analysis, such as statistical analysis, and optimization; low costs of machine memory and expansion of the maximum permissible complexity of the analyzed circuits; flexibility, the possibility of making changes to the program, in particular, the replacement of mathematical models of circuit components, the introduction of new models, the improvement of the computational algorithm, the inclusion of the pro-gram in more complex programs, etc.; the availability of convenient input and output of initial information.
Research Highlights: There is a problem of forest seeds quality assessment and grading afield in minimal costs. The grading quality of each seed coat color class is determined by the degree of its separation with a mobile optoelectronic grader. Background and Objectives: Traditionally, pine seeds are graded in size, but this can lead to a loss of genetic diversity. Seed coat color is individual for each forest seed and is caused to a low error in identifying the genetic features of seedling obtained from it. The principle on which the mobile optoelectronic grader operates is based on the optical signal detection reflected from the single seed. The grader can operate in scientific (spectral band analysis) mode and production (spectral feature grading) mode. When operating in production mode, it is important to determine the optimal engineering parameters of the grader that provide the maximum value of the separation degree of seed-color classes. For this purpose, a run of experiments was conducted on the forest seeds separation using a mobile optoelectronic grader and regression models of the output from factors were obtained. Materials and Methods: Scots pine (Pinus sylvestris L.) seed samples were obtained from cones of the 2019 harvest collected in a natural stand. The study is based on the Design of Experiments theory (DOE) using the Microsoft Excel platform. In each of three replications of each run from the experiment matrix, a mixture of 100 seeds of light, dark and light-dark fraction (n = 300) was used. Results: Interpretation of the obtained regression model of seed separation in the visible wavelength range (650–715 nm) shows that the maximum influence on the output—separation degree—is exerted by the angle of incidence of the detecting optical beam. Next in terms of the influence power on the output are paired interactions: combinations of the wavelength with the angle of incidence and the wavelength with the grader’s seed pipe height. The minimum effect on the output is the wavelength of the detecting optical beam. Conclusions: The use of a mobile optoelectronic grader will eliminate the cost of transporting seeds to and from forest seed centers. To achieve a value of 0.97–1.0 separation degree of Scots pine seeds colored fractions, it is necessary to provide the following optimal engineering parameters of the mobile optoelectronic grader: the wavelength of optical radiation is 700 nm, the angle of incidence of the detecting optical beam is 45° and the grader’s seed pipe height is 0.2 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.