One of the adaptive strategies for the constantly changing conditions of the environment utilized in bacterial cells involves the condensation of DNA in complex with the DNA-binding protein, Dps. With the use of electron microscopy and electron tomography, we observed several morphologically different types of DNA condensation in dormant
Escherichia coli
cells, namely:
nanocrystalline
,
liquid crystalline
, and the
folded nucleosome-like
. We confirmed the presence of both Dps and DNA in all of the ordered structures using EDX analysis. The comparison of EDX spectra obtained for the three different ordered structures revealed that in
nanocrystalline
formation the majority of the Dps protein is tightly bound to nucleoid DNA. The
dps
-null cells contained only one type of condensed DNA structure,
liquid crystalline
, thus, differing from those with Dps. The results obtained here shed some light on the phenomenon of DNA condensation in dormant prokaryotic cells and on the general problem of developing a response to stress. We demonstrated that the population of dormant cells is structurally heterogeneous, allowing them to respond flexibly to environmental changes. It increases the ability of the whole bacterial population to survive under extreme stress conditions.
The paper represents the study of interaction between deoxyribonucleic acid (DNA) and deoxyribonucleic acid-binding protein from starved cells (DPS) cluster formation and crystal growing within a cell. This study is a part of the project that includes European Synchrotron Radiation Facility (ESRF) investigations of in vivo and in vitro nanocrystallization processes of Escherichia coli (E. coli) nucleoid under stress condition combined with theoretical molecular dynamics approaches. Nucleoid biocrystallization is an adaptive mechanism of bacterial cells under stress. It is poorly understood at the present time. Understanding crystal formation process is a very important for molecular biology, pharmacology and other areas. In the simulation part the coarse-grained modeling of various combinations of the following molecules was used: DPS proteins (from 1 to 108 DPS dodecamers in simulation box), short DNA fragments with a length of 24 base pairs (b.p., from 1 to 100 DNA fragments in simulation box) and a part of pBluescript SK(+) plasmide with a length of 161 b.p., in the presence of ions. We defined structural, energetic and dynamic properties of DPS-DPS and DPS-DNA complexes in clusters and crystals that allow us to predict crystal formation and the structure of these crystals in experimental systems. Communicated by Ramaswamy H. Sarma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.