The snake-eyed skink Ablepharus kitaibelii is one of the smallest European lizards, but despite its minute size it is able to feed on comparatively large prey. Here we investigate the diet of A. kitaibelii and the mechanisms that allow the skink to overpower relatively large and even noxious prey. High-speed cinematography showed that A. kitaibelii uses a series of shaking and battering movements to immobilise and kill prey prior to swallowing. During this process, the skinks rises up on the hind limbs and then whacks the prey sidewise on the substrate by twisting the trunk, neck and head laterally. Our analysis showed that the shaking kinematics is very uniform among the investigated specimens. The morphological investigation of the cranio-cervical system revealed that A. kitaibelii possesses a well-developed synovial joint between the odontoid process of the axis, the atlas, and the basioccipital. The odontoid process is cylindrical and slim and together with the atlas and the basioccipital it forms a highly specialised pivot joint for lateral head rotation. We propose that the occipito-atlanto-axial complex of A. kitaibelii represents a functional adaptation for additional stabilisation of the cranio-cervical complex during prey shaking. Digital data from morphological databases showed that specialised joints of this type are very rare, but do also occur in other squamate groups. Thus we hypothesise that specialised cranio-cervical joints have evolved parallel as functional adaptations to different feeding and locomotion patterns. Future studies that link feeding kinematics and locomotion to cranio-cervical morphology might elucidate the function of various specialised occipito-atlanto-axial systems of squamates.
Cranial kinesis refers to intracranial movements in the vertebrate skull that do not concern the jaw joint, the middle ear or the hypobranchial skeleton. Different kinds of cranial kinesis have been reported for lizards, including mesokinesis, metakinesis, amphikinesis (simultaneous mesokinesis and metakinesis) and streptostyly. Streptostyly is considered relatively widespread within lizards, whereas mesokinesis has been documented only for geckos, varanids and anguids. The present study investigated cranial kinesis in the miniaturised scincid Ablepharus kitaibelii by integrating morphological and experimental data. Based on micro computed tomography, we provide a description of skull osteology. Cranial joints were studied with histology, which results in the first detailed description of cranial joint histology for a member of the Scincidae. Taken together, the morphological data indicate a high potential for amphikinesis and streptostyly, which was also corroborated by skull manipulations. High-speed cinematography demonstrated that mesokinesis occurs during food uptake, processing and intraoral transport cycles. Bite force measurements showed prolonged and reasonably hard biting even at large gape angles. Based on these data, we formulate a model of the amphikinetic A. kitaibelii skull mechanism, which provides an extension of Frazzetta's quadric-crank model by placing a special emphasis on metakinesis. According to this model, we hypothesise that metakinetic intracranial movements may provide a means for reducing strain in jaw adductor muscles. Presented hypotheses can be addressed and tested in future studies.
The slow-worm lizards (Anguis) comprise five species occurring throughout most of the Western Palearctic. Although these species are relatively uniform morphologically – with the exception of A. cephallonica, which exhibits a quite unique morphology – they are genetically deeply divergent. Here, we provide detailed distribution maps for each species and discuss their biogeography and conservation based on updated genetic data and a robust distribution database. We pay particular attention to the so called ‘grey zone’, which typically represents secondary contact zones and in some cases confirmed or presumed hybrid zones. Four of the five species live in parapatry, while only two species, A. cephallonica and A. graeca from the southern Balkans occur in partial sympatry. Further research should focus on the eco-evolutionary interactions between species in contact, including their hybridization rates, to reveal deeper details of the slow-worm evolutionary and natural history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.