Rise of atmospheric CO2 is one of the main causes of global warming. Catastrophic climate change can be avoided by reducing emissions and increasing sequestration of CO2. Trees are known to sequester CO2 during photosynthesis, and then store it as wood biomass. Thus, breeding of trees with higher wood yield would mitigate global warming as well as augment production of renewable construction materials, energy, and industrial feedstock. Wood is made of cellulose-rich xylem cells produced through proliferation of a specialized stem cell niche called cambium. Importance of cambium in xylem cells production makes it an ideal target for the tree breeding programs; however our knowledge about control of cambium proliferation remains limited. The morphology and regulation of cambium are different from those of stem cell niches that control axial growth. For this reason, translating the knowledge about axial growth to radial growth has limited use. Furthermore, genetic approaches cannot be easily applied because overlaying tissues conceal cambium from direct observation and complicate identification of mutants. To overcome the paucity of experimental tools in cambium biology, we constructed a Boolean network CARENET (CAmbium REgulation gene NETwork) for modelling cambium activity, which includes the key transcription factors WOX4 and HD-ZIP III as well as their potential regulators. Our simulations predict that: (1) auxin, cytokinin, gibberellin, and brassinosteroids act cooperatively in promoting transcription of WOX4 and HD-ZIP III; (2) auxin and cytokinin pathways negatively regulate each other; (3) hormonal pathways act redundantly in sustaining cambium activity; (4) individual cambium cells can have diverse molecular identities. CARENET can be extended to include components of other signalling pathways and be integrated with models of xylem and phloem differentiation. Such extended models would facilitate breeding trees with higher wood yield.
Gromov-Hausdorff distances measure shape difference between the objects representable as compact metric spaces, e.g. point clouds, manifolds, or graphs. Computing any Gromov-Hausdorff distance is equivalent to solving an NP-hard optimization problem, deeming the notion impractical for applications. In this paper we propose a polynomial algorithm for estimating the so-called modified Gromov-Hausdorff (mGH) distance, whose topological equivalence with the standard Gromov-Hausdorff (GH) distance was established in [36] (Mémoli, F, Discrete & Computational Geometry, 48 (2) 2012). We implement the algorithm for the case of compact metric spaces induced by unweighted graphs as part of Python library scikit-tda, and demonstrate its performance on real-world and synthetic networks. The algorithm finds the mGH distances exactly on most graphs with the scale-free property. We use the computed mGH distances to successfully detect outliers in real-world social and computer networks.
A myriad of phenomena in materials science and chemistry rely on quantum-level simulations of the electronic structure in matter. While moving to larger length and time scales has been a pressing issue for decades, such large-scale electronic structure calculations are still challenging despite modern software approaches and advances in high-performance computing. The silver lining in this regard is the use of machine learning to accelerate electronic structure calculations -- this line of research has recently gained growing attention. The grand challenge therein is finding a suitable machine-learning model during a process called hyperparameter optimization. This, however, causes a massive computational overhead in addition to that of data generation. We accelerate the construction of neural network models by roughly two orders of magnitude by circumventing excessive training during the hyperparameter optimization phase. We demonstrate our workflow for Kohn-Sham density functional theory, the most popular computational method in materials science and chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.