The conditions of formation of magnesium dicarbide from magnesium and acetylene were investigated; the optimum temperature, reaction period, and acetylene flow rate were sought so as to achieve high yields of dicarbide and minimize the free carbon deposit. The porosity of the magnesium dust was found to have a pronounced effect upon the yield; a considerable improvement was achieved by pressing the dust into pellets with controlled porosity. The powder X-ray diffraction patterns of MgC2 samples were studied. The intense reflection could be indexed for the bet symmetry (a = 392.9 ± 0.6 pm, c = 503.7 ± 1.2 pm), but as the intensity calculations for dicarbide models with different arrangements of the C22- groups indicate, the symmetry of the MgC2 lattice will be lower than tetragonal. The thermal decomposition of the dicarbide leading to sesquicarbide was examined in dependence on time and temperature by hydrolyzing the samples and analyzing the gaseous products by GLC. Due to the thermal decomposition, traces of sesquicarbide appear even during the dicarbide synthesis. The decomposition process was approximated by kinetic equations. The Arrhenius equation constants, in the temperature region of 485-560 °C, are AA = 4.97 . 1012 s-1, EA = 257 kJ mol-1.
The structure of Mg2C3 and the course of its decomposition were studied. The powder X-ray diffraction patterns were analyzed to obtain the lattice parameters for hexagonal Mg2C3, a = 743.4 ± 0.5 pm, c = 1 056.4 ± 1.6 pm. Thermal decomposition data were obtained for temperatures 670-740 °C and pressure 130 Pa; they could be fitted satisfactorily by kinetic equations for various processes, including the 1 st order decomposition reaction, and so the controlling phenomenon of the reaction cannot be deduced based on the kinetic data. The 1 st order rate constants and reaction halflives were evaluated for various temperatures and approximated by the Arrhenius equation to calculate the parameters AA = 1.97 . 1014 s-1, EA = 333 kJ mol-1. The conditions of synthesis of Mg2C3 are discussed from the point of view of the choice of a suitable hydrocarbon for the reaction with magnesium. The thermal stability of the sesquicarbide increases with increasing pressure; it could be formed from dicarbide and sustained even at a temperature of 1 450 °C by applying a pressure as high as 6 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.