A methodology for the simultaneous modulation of the chemical and physical states of an amorphous TiO x layer surface and its impact on the subsequent deposition of a polycrystalline Ag layer are presented. The smoothened TiO x layer surface comprising chemically altered, oxygen-deficient states serves as a nucleating platform for Ag deposition, facilitating a marked increase (∼75%) in the nucleation number density, which strongly enhances the wettability of ultrathin Ag layers. The physically smoothened TiO x /Ag interface further reduces the optical and electrical losses. When the proposed methodology is applied to TiO x /Ag/ZnO transparent conductive electrodes (TCEs), exceptional TCE properties are yielded owing to the simultaneous improvement in visible transparency and electrical conductivity; specifically, a record-high 0.22 Ω −1 Haacke figure of merit is realized. TCEs are prepared on flexible substrates to verify their applicability as stand-alone flexible transparent heaters and as integrated heaters within electrochromic devices to enhance color-switching reactions.
Rapid advances in flexible optoelectronic devices necessitate the concomitant development of high-performance, cost-efficient, and flexible transparent conductive electrodes (TCEs). This Letter reports an abrupt enhancement in the optoelectronic characteristics of ultrathin Cu-layer-based TCEs via Ar + -mediated modulation of the chemical and physical states of a ZnO support surface. This approach strongly regulates the growth mode for the subsequently deposited Cu layer, in addition to marked alteration to the ZnO/Cu interface states, resulting in exceptional TCE performance in the form of ZnO/Cu/ZnO TCEs. The resultant Haacke figure of merit (T 10 /R s ) of 0.063 Ω −1 , 53% greater than that of the unaltered, otherwise identical structure, corresponds to a record-high value for Cu-layer-based TCEs. Moreover, the enhanced TCE performance in this approach is shown to be highly sustainable under severe simultaneous loadings of electrical, thermal, and mechanical stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.