Climate change impact assessment is crucial for strategic planning in many areas, including water management, agriculture and forestry. Water planning has a long tradition in the Czech Republic, who has implemented the requirements of the Water Framework Directive since 2000. Following the expected impacts of climate change on the hydrological regime, adaptation measures in the water sector are being prepared as part of strategic plans. This contribution studies the uncertainty propagation of climate scenarios in hydrological data, which are then used to assess the reliability of water resources and to design appropriate adaptation measures. The results are being discussed for a case study in the deficit area of Rakovnický stream and Blšanska river basins, which are among the driest areas in the Czech Republic. Research of the impact of climate change on the reliability of water resources has been prepared using ensembles of selected regional climate models. This approach has allowed a probabilistic assessment of the impact on the hydrology regime and the reliability of water supply from reservoirs for various time horizons of climate change. In view of the relatively large variance of potential impacts on water resources, options for further strategic planning in the water management area are being discussed.
An energy dissipation on hydraulic structures is a scientifically highly examined field of study. Gained knowledge can be used to ensure the safety of the hydraulic structures and the channels which is crucial during floods. Above that, those structures are also part of the critical infrastructure therefore their function is necessary. It is assumed that in the Czech Republic the precipitation distribution is changing due to climate change thus episodes of extreme floods may be observed more often. The paper brings brand new knowledge on the kinetic energy dissipation on the chute and in the stilling basin and its impact on the riverbed scour hole development. The presented research was conducted in the Water Management Experimental Centre of Czech Technical University in Prague, Faculty of Civil Engineering. The research aimed to examine the energy dissipation mechanism on different geometric modifications of the construction of spillway chute and stilling basin and its impact on the process of scour hole development. These various types of dams’ flood safety equipment were examined in the hydraulic laboratory: an elementary form of the spillway without any stilling basin; the elementary form of the spillway and the stilling basin (crest and spillway channel had the same width); the chute width was reduced, and the stilling basin had the full width; steps were added on the narrowed chute and the and stilling basin had the full width; only the spillway crest was reduced to a half-width; only the stilling basin width was smoothly reduced; the chute’s width was smoothly reduced along the chute and the stilling basin had full width; the chute’s width was smoothly reduced along the chute and the stilling basin had the width reduced to a half. The flow, water levels, scour hole and deposit dimensions were measured. Then the amount of energy dissipated was computed. The correlation and connection between energy dissipation and scour hole development was investigated. These outcomes can be used as a recommendation of an appropriate construction design to provide better flood safety of the hydraulic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.